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Performance and Ada Style for the AN/BSY-2
Submarine Combat System

Abstract: The performance of programs prepared with the Verdix Ada Development
System (VADS) was measured and analyzed for programmers preparing a large Ada
system. Using standard Ada benchmark suites (ACEC, AES and PIWG) and a
representative Motorola 68030 target system as a source of data, questions were
posed and answered about programming alternatives, based on the measured
performance of the compiler. The questions included in the report were extracted from
a much larger set selected from an analysis of the BSY-2 Style Guide and augmented
with additionai questions suggested by SEI experience. The derivation of the questions
and the template for the performance analysis sections are presented as appendices.

1 Introduction

The U. S. Navy's AN/BSY-2 Submarine Combat System will use the Ada programming language for the
majority of its software. The coding style used in preparing this software will affect the readability, test-
ability and maintainability of the code during the software life cycle. Programming style can aiso affect
the performance of the software in operation. The emphasis of this report is to describe the effect of Ada
coding style on the execution performance of Ada programs. impact on memory utilization is a second-
ary concern but is mentioned when appropriate.

This report has been organized as a series of questions. Each question provides information about pro-
gramming choices. In developing a software system, implementors make a iarge number of choices
about the design and coding of software. Because software is inherently flexible and Ada provides a
large number of alternatives to the programmer, the correct or most efficient choice among the alterna-
tives is not always known.

This report emphasizas the performance consequences of Ada coding choices, rather than character-
izing Ada’s performance or comparing Ada to other computer programming languages. i abstracts rei-
evant information from Ada benchmark suites and presents those data and a series of conclusions.
Performance is, of course, only one aspect to be considered in making programming choices. The
code’s consistency, clarity, maintainability, plus other factors, must aiso be considered. This report is
intendeJ to inform rather than dictate. In particular, the intent is to allow rational choices to be made with
knowledge of the performance consequences, rather than suggesting that performance is or should be
the overriding consideration. Often the differences in performance between alternative choices are
shown to be negligible.

While the questions asked by this report are intended to be of general interest to Ada users, the con-
clusions are only applicable to the tested hardware and software configurations specified in the individ-
ual entries. The primary source of performance information is a configuration using the Verdix Ada
compiler 2lected for BSY-2 and commercial-off-the-shelf hardware used for the initial prototype of the
BSY-2 system. Where appropriate, conclusions are also drawn from other systems and the work of oth-
er govemment agencies. However, it should be emphasized that these results are specific recommen-
dations for BSY-2 and are not universally applicable to all Ada systems or hardware platforms. As new
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system hardware and software are deployed, ali relevant tests must be re-executed and the results ex-
amined to ensure the recommendations remain current,

1.1 BSY-2 Perfori:iance Questions

This section preser.« the performance questions addressed in this report. Appendix A on page 181 de-
scribes how the list of questions was selected. Performance information for each question is provided
in the body of the report (Performance Reports on page 3).

*.2 Performance Questions List
This list is organized aiphabetically by topic.

1. Arrays: What are the performance characteristics of array aggregate assignments
and corresponding loop constructs?

2. Check Suppresslon: How does performance change when checks are turned off?

3. Data Locatlon: What is the performance effect of declaring data locally or outside
the executing scope?

4. Enumeration Types: How does the performance of operations on objects of an
enumneration type compare with the performance of an equivalent representation
using strings or numeric values?

5. Exceptions: What are the performance consequences of providing exception
handling capabilities?

6. Generic Units: What is the comparative performance of generic and nongeneric
units?

7. Inlining of Procedures: What is the effect of inlining procedures and generic
procedures?

8. Logical Tests: What are the performance tradeoffs between the case statement
and if statement?

9. Loop Etticlency: Do different loop constructs vary in efficiency?

10. Module Size: Is the performance of a program divided into modules different from
a monolithic design?

11. Optimization Options: What are the effects of different optimization levels?

12. Precislon: What are the performance differences between single-precision and
extended-precision numeric operations?

13. Private Types: Is there a difference in performance between operations on objects
of a private type and objects of a visible type?

14, Records: What is the performance of the various methods for assigning values to
record objects?

15. Rendezvous: What are the performance characteristics of the various kinds of
task rendezvous?

2 CMU/SEI-92-TR-32




2 Performance Reports

This section contains observations based on benchmark tests. Each section opens with a question
about performance, style, and/or features, and an answer to the question plus the detailed data that
support the answer. The questions are arranged alphabetically by the key subject.

2.1 Background

The performance reports were developed as a method of presenting interesting results from the cub-
stantial body of data generated by Ada benchmark test suites. Each performance report answers a spe-
cific question and uses data from a selected subset of benchmark tests that specifically address this
question.

Several basic decisions were made about the development of the performance reports:

* The repont would focus on choices available to the application programmer.
* The BSY-2 Style Guide would be the primary source of questions.

* Data from the standard Ada benchmark suites would be used, rather than
customized tests.

o |imitations of the current benchmark suites (e.g., missing tests) would be pointed out
as encountered.

2.1.1 BSY-2 Style Guide

The BSY-2 Style Guide is contained in Appendix | of the document “Software Standards and Proce-
dures Manual for the AN/BSY-2 SUBMARINE COMBAT SYSTEM." It lays out coding standards for Ada
programmers and is written to reflect commonly held standards of good programming practice. Howev-
er, it does not address the performance of the resulting Ada code.

In addition to the issues raised by the BSY-2 Style Guide, the report authors decided to include addi-
tional questions fo cover issues not raised in the style guide. In preparing these guestions some con-
sideration was given to including issues that were well addressed by the then current releases of the
standard Ada benchmark suites.

Appendix A on page 181 lists the questions derived from the BSY-2 Style Guide.

2.1.2 Benchmark Suites

Performance data for the report were obtained by use of commonly available benchmark suites. The
suites used for this report are all written in Ada:

PIWG A benchmark suite produced by a volunteer group, the Performance
Issues Working Group of the Special Interest Group for Ada (SIGAda),
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(a pant of the Association for Computing Machinery or ACM). The
PIWG test suite is compact, widely used and available without charge.

ACEC The Ada Compiler Evaluation Capability is a set of benchmark tests
prepared for the Ada Joint Program Office (AJPO) of the U.S. Depan-
ment of Defense. This suite contains a farge number of tests and con-
centrates on measuring the execution performance of an Ada system.

AES The Ada Evaluation System is a benchmark suite developed for the
United Kingdom's Ministry of Defence. It covers more features of an
Ada compilation system than the ACEC, but comtains fewer execution
performance tests.

The ACEC and AES tests will be merged into a new release of the
ACEC test suite.

Appendix 2 on page 207 presents information on the sources for the benchmark suites.

2.1.3 Test Environment

The individual benchmark tests were compiled using the Verdix Aca Development System (VADS), the
commercial compiler selected for the BSY-2 test environment and executed on a representative target
system. Specifically, a Digital Equipment Corporation clustered microcomputer running the VMS oper-
ating system was used as the host system for compilation and data storage. The target system tested
a 25 MHz MC88030 microprocessor, and was assembled from commercially availabie components
from Motorola Microsystems.

The MC68030 microprocessor target system was selected to emulate the prototype BSY-2 hardware
environment. Cost considerations precluded obtaining military specification hardware for testing. The
BSY-2 comraunications network was not emulated or tested for this study.

The host environment used Digital Equipment Corporation's VMS operating system, one of the two host
operating systems used by the BSY-2 development team, hut did not specifically emulate any BSY-2
host environment. In general, the host environment was not tested for this report.

The Verdix Ada Development System (VADS) compiler was tested using the host and target systems.
The versions of the VADS compiler and run-time system were matched to the version used for BSY-2.

The specifics of the test contiguration(s) used are indicated in each performance repon.

2.1.4 Accuracy of Data and Resuits

The benchmark suites used in this report measure and repont executior: times and, less frequently,
memory sizes for their tests. In general, these times are used for drawing all the conclusions in the in-
dividual performance reports.

Execution times in each of the benchmark suites were collected by use of the standard Ada clock. This
relatively coarse bt portable timing source requires that the benchmark measure a sufficiently large
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body of code to ensure accurate results. This is achieved by using a large body of representative state-
ments or the dual loop paradigm. The specific methods vary among the suites. Thus alt times reported
in this report represent average (mean) values. The ACEC states that its accuracy is £5.0% and the
PIWG asserts an accuracy of £10.0%. The AES documentation does not set a precise limit, but will
mark as “inconsistent” any test where the time for any individual test execution varies by more than 10%
from the average time obtained from five executions of a test.

Due to the methods used in obtaining timing data, none of the standard benchmark suites reflects tne
range of variation at the statement level. Thus the performance data generated by the standard suites
are not suitable for worst case analysis. The recommendations in this report theretore reflect choices
which should improve average performance.

In several instances, as noted in individual performance reports, errcrs in the benchmark results were
discoverad. in other instance s, disagreement was noted between the test suites.

2.1.5 Question Format

The individual performance reports use a common format. Instructions for forming and filling out perfor-
mance reports are presented in Appendix A on page 181. In reading the reports, the first three sections
(Question, Summary, and Discussion) provide a summary view of the entire report along with the most
important performance data. The remaining sections describe the test environment and present the rel-
evant data from the benchmark suites. These sections may be read selectively, according to the read-
er's interests.

CMU/SEI-92-TR-32 5
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2.2 Arrays

Question: What are the performance characteristics of amay aggregate assignments and
corresponding loop constructs?

Summary: Array aggregate assignment had the best observed periormance. For high performance,
arrays should be declared locally and accessed directly. Suppressing checks provides moderate
performance gains. Packing arrays is particularly etfective for Boolean arrays, and generally improves
performance and saves space.

Discussion: Arrays are convenient structures for holding large homogenous bodies of data. The as-
signment, retrieval, and manipulation of array contents, performed many times, affords the programmer
the opportunity to improve runtime performance efficiently by concentrating on small, intensively exe-
cuted sections of code. Similarly, since large arrays consume large amounts of storage, they are natural
targets for representation using compact format. Economy of space and time are not independent char-
acteristics, however, and the interaction may require a compromise.

The spectrum of array formats and the operations performed on them is potentially broad, but the fol-
lowing performance characteristics are considered to be of general interest:

¢ What is the performance of various Ada statements for accessing the elements

contained in arrays?

Examples: Array slices, loop constructs.

Results: In order of efficiency: use literal assignment {i.e. one statement per array el-
ement), array aggregates, array assignments, for loops, while loops. Tests were per-
formed for arrays of integers, reals and Boolean. (Note: however the coverage of the
tests was not orthogona! across the data types and used only simple assignments
[Observation 5 on page 21)).

* How is runtime performance affected by the form of the range specification?
Examples: Constants, attributed ranges, ranges held in variables.

Results: This characteristic was not addressed adequately by the test results avail-
able.

* How is runtime performance affected by the method used to create the array?
Examples: Static allocation in library unit, within declare block, via new allocator.
Results: The AES test TI02 (Observation 2 on page 13} indicates that allocating ar-
rays within the local execution block is more efficient than creating them with a new
operation or defining them within a library unit.

* What are the performance effects of suppressing checks when manipulating arrays.
Examples: pragma SUPPRESS (INDEX_CHECK), pragma SUPPRESS
(RANGE_CHECK).

Results: The ACEC tests perform a number of comparisons between code segments
with and without checking enabled (Observation 3 on page 17). While several of the
tests proved to be incorrect, the valid tests indicate that the compiler optimizes
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checks for constant indices, that the overhead for checking while multiplying the con-
tents of a single array element in one statement is 8%, and that the overhead for
checking in a statement including references to three elements of the same array is
about 24%.

* What are the performance characteristics of packed vs. unpacked arrays?
Examples: packed vs. unpacked Boolean arrays.

Results: The AES test T102 {(Observation 2 on page 13) indicates that a packed rep-
resentation in general does not change or improves runtime performance, with one
observed but trivial exception for a mix of array operations. The tested arrays con-
tained Boolean and character values.

The ACEC tests summarized in Observation 1 indicate that packed Boolean arrays
gain significant runtime performance benefits from packing with the exception of ac-
cessing individual elements (tests ss333 and s5344). it is not clear however if pack-
ing other array types will demonstrate similar decreases in execution time.

The ACEC tests show that packing is effective for arrays of integer (Observation 4
on page 21). Integer types are packed to bytes, but do not span bytes (storage units).
Execution speed is not compared between packed and unpacked integer arrays.

For related information, see the entries on loop performance (page 77) and the effects of suppressing
constraint checks (page 25).

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEDbus chassis.

Compilier: Verdix Ada Development System (VADS) VAX YMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: ACEC tests of operations on Boolean arrays, particularly the effects of packed vs.
unpacked arrays.

The ACEC examines execution speed for a number of separate Boolean array operations. These tests
show that Boolean arrays generally reduce execution time when packed. The only exception is in ac-
cessing individual array elements, where the packed array required about 30% more time to perform
the assignment.
ACEC Test Resufts:
Configuration 1, ACEC Release 2.0, SSA Reports of “Language Feature Overhead™:

“Small Boolean Arrays (unpacked vs packed) =, AND, NOT,” page 9

“Small Boolean Arrays (unpacked vs packed) =, AND,” page 9
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“Small Boolean Arrays (unpacked vs packed) /=, AND," page 10

“Small Boolean Arrays (unpacked vs packed) AND," page 10

“Small Boolean Arrays (unpacked vs packed) OR" [tests ss341, ss330], page 10
“Small Boolean Arrays (unpacked vs packed) OR" [tests 8331, s5342], page 11
“Small Boolean Arrays (unpacked vs packed) XOR,” page 11

“Small Boolean Arrays (unpacked vs packed) Fetch and Store,” page 11

“Small Boolean Arrays (unpacked vs packed) Slice Assignment,” page 11

“Small Boolean Arrays (unpacked vs packed) - Conversion,” page 12

“Small Boolean Arrays {(unpacked vs packed) - Fetch From Array,” page 12

“L arge Boolean Arrays (unpacked vs packed) AND" [tests 55351, ss348), page 12
“Large Boolean Arrays (unpacked vs packed) AND, NOT, OR, XOR], page 13
“Large Boolean Arrays (unpacked vs packed) AND” [tests §5350, ss353], page 13

The SSA report frequently refers to tests of “16 bil” Boolean arrays. The test code does not force any
representation, so the actual array layout used is set by the compiler defaults.

Language Feature Overhead

Small Boolean Arrays (unpacked vs packed)} =, AND, NOT

Test Execution Bar Similar
Name Time Chart Groups
88337 5.70 rRAK |

55326 44_80 EE A2 22222 S X222 2222222202222 2R2 k

- " " o 7 o 2 . T o 7 o e o - — - ———————— —— s

O = " . et i e i A B i i i s s o e e o R i e e T o o el A B0 = A e e - T W

88337 bool := { sl and not 82 ) = s53 ;
-- operations on 18 bit packed boolean array, =, AND, NOT

23326 bool := { bl and not b2 ) = b3 ;
-~ operations on 16 bit unpacked boolean array, =, AND, NOT

Test Execution Bar Similar
Name Time Chart Groups
25338 3.61 bR A2 {

3532'[ 22.20 L2223 A 2RSSR SRR RSS2 2RSS 2 d R ‘

- e e ol o e T W . 7 e T o o 0 o R A 4 D Y . B A A A A A

> e e o " o o T ke 48 8 e S O A e 0 AR o A Bt o A i S o =
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53338 bool := { sl and s2 } = sl ;
-~ operations on 16 bit packed boolean array, =, AN

e e 8 - e e 2 2 M T R o o oo o e T i, Sy e e e e -

ss327 bool := { bl and b2 ) = bl :

-- operations on 16 bit unpacked boolean array, =, AND
Small Boolean Arrays (unpacked vs packed) /=, AND
Test Execution Bar Similar
Name Time Chart Groups
ss339 3.38 HEEEE |
55328 24.50 2322222222022 28R X222 222 d gl '

55339 IF ( 32 AND 53 ) /= s3 THEN die ; END IF ;

-- operations on 16 bit packed booclean array, /=, AND

$s328 IF ( b2 AND b3 ) /= b3 THEN die ; END IF ;

~- operations on 16 bit unpacked boclean array, /=, AND
Small Beoolean Arrays (unpacked vs packed) AND
Test Execution Bar Similar
Name Time Chart Groups
35340 3.13 EREN |
33329 24.30 LA 283240322222 2232232223220 ) 1
Individual Test Descriptions

ss340 s4 := s1 AND s2 ;
~- operations on 16 bit packed boolean array, AND

- - - - - . e O S o B s

83329 b4 := bl AND b2 ;
~~- operations on 16 bit unpacked boolean array, AND

Small Boolean Arrays (unpacked vs packed) OR

Similar
Groups

Test Execution Bar

Name Time Chart

88341 3.13 kXX

s3330 24.30 RN AR RN IR R RN AN IO RRN A AN AR

55341 s4 := sl OR s2 ;
-~ operations on 16 bit packed boolean array, OR

i " -~ - 2 " e o 1k . o e A A P AR P e i e s e el P W A

55330 b4 := bl OR b2 ;
-- operations on 16 bit unpacked boolean array, OR

. e A T i 1 e A S e B o Lk g ik A T kw2 e {4 27 T S A T kB P
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Small Boolean Arrays (unpacked vs packed) OR

Test Execution Bar Similar
Name Time Chart Groups
55342 52.70 AR RN R T S KRN R AN IR N TR T RNA RN RS f

55331 54.50 2222222232223 222233222222 F2 2222 2

-- OR (aggregate with range clause)

bool := yy > zz ;

ss331 b4 := bl OR setl’( setl’range => bool ) ;
-- operations on 16 bit unpacked boclean array, OR
-- uses an aggregate with range clause

55342 s4 := sl OR set2’( set2'range => bool ) ;
-- operations on 16 bit packed boolean array, OR
-~ uses an aggregate with range clause

Small Booclean Arrays {unpacked vs packed) XOR
Test Execution Bar Similar
Name Time Chart Groups
ss343 3.33 *H K |
558332 2€6.50 AEKKAHTREA N IR IR AN ENAN A AT AN R RE R

Individual Test Descriptions

8s343 s4 := sl XOR 82 ;
-- operations on 16 bit packed boolean array, XOR

$s8332 b4 := bl XOR b2 ;
-- operations on 16 bit unpacked boolean array, XOR

Small Boolean Arrays (unpacked vs packed) Fetch and Store

Test Execution Bar Similar
Name Time Chart Groups
55333 1.69 AEXARXT RN N '

ss344 5.78 KRR RIKIRRR RN AANE IR A KRR AR AN RRR |

s8344 sl (ei ) := 381 (el ) ;
-~ fetch from and store into indexed element (16 bit packed)

e e e et - - - - o

$s333 bl (ei ) :=Dbl (e} ) ;
-~ fetch from and store into indexed element (16 bit unpacked)

- - - A= 4 e 4 > A L D . . e Ak e o 0 S R St m s o o

Test Execution Bar Similar

CMU/SEI-92-TR-32




Name Time Chart Groups
55345 2.3 P2 322222022828 23222] |
ss334 3.9¢ AR AR AN AR AR AR TR AN R A AR R TR E N

58345 sl ( 10..14 ) := s2 ( 11..15 ) ;
-- operations on 16 bit packed boolean array, slice assignment

e o o e A 4 i T o T o L e W (R o A

8s334 bl {( 10..14 ) := b2 ( 11..15 )} :
-- operations on 16 bit unpacked boolean array, slice assignment

Small Booclean Arrays (unpacked vs packed) = Conversion

Test Execution Bar Simjilar

Name Time Chart Groups

55335 50‘60 KA ENE AR AN AN R AN RN J

88346 76.00 L3223 2222242222202 2 2XadZ] ]
Individual Test Descriptions

Test Execution Bar Similar

Name Time Chart Groups

$s335 b4 := setl ( s1 ) ;
-~ convert from unpacked to packed 16 bit boolean array

85346 s4¢ := set2 ( bl ) ;
-- conversion packed to unpacked 16 bit boolean array

Small Boolean Arrays (unpacked vs packed) - . etch From Array

Test Execution Bar Similar

Name Time Chart Groups

33336 1_28 (22232322222 L2222 4220

ss347 1.67 HAREKRRENRRRAACRNRI R A RN RN |
Individual Test Descriptions

85347 bool := 85 ( ei ) ;
~- fetch element from 16 bit packed boolean array

—— - - - - ——

88336 bool := b5 ( ei ) ;
-- fetch element from 16 bit unpacked boolean array

Test Execution Bar Similar
Name Time Chart Groups
55351 58_10 L2 22222 X224
55348 202.40 A ANRRRN IR AR RN RN AR R TR AR AN R R ®
12 CMU/SEI-92-TR-32




Individual Test Descriptions

e oy e S o S - ) " ok > ke 2 7 S AN W o o e e e b S o 48 L e o o

o e S T o T 1 o A S B i Y e e e o e 0 A8 T e T e e s o

$s348 bool := ( 1lbl AND 1lb2 ) = 1bl ;
~- operations on large unpacked Boolean array, =, AND

58351 b .. = ( lsl AND 1is2 ) = lsl ;
~- operations on large packed Beolean array, =, AND

A 0 A ok o 0 e e S 4 = 48 Y = o . o T o e e W T o M S o e o Y M O P o e o e % o

e o " = s 4 i 400 o T P o R Y S o P S A U o A W > YR P T A s

Test Execution Bar Similar
Name Time Chart Groups
ss352 406.40 (2R E RS2SR 2222 2] |

53349 789.40 P22 832222 222222233 3332223322822 dd 4 I

e . o o o i 2 o i B T e e e e o i R T o P VY o R e T Y " e " ]

ss352 1s4 := ( NOT ( 1sl AND 1s2 ) OR ls3 ) XOR 1s5 ;
-- operations on large packed Boolean array, AND, OR, XOR

55349 1b4 := { NOT ( lbl AND 1b2 ) OR 1b3 ) XOR 1b5 ;
~- operations on large unpacked Boolean array, NOT, XOR, AND, OR

—————————— -~ - - -~ e =

Large Boolean Arrays (unpacked vs packed) AND

Test Execution Bar Similar
Name Time Chart Groups
s5350 2.18 EEAARERTRARA KRN RRARNR RN RKA N

ss353 2.57 P e e e e s e l

——— - —— - -~

Individual Test Descriptions

e o e e 2 S e e = ke i B o e S T T S e O T o > o o e

ss350 b4 (ei ) := 181 { ej ) ;
-- convert packed to unpacked large Boolean array

- - - [p—— - — ———

ss353 i1s4 (el ) := 1bl (ej ) :
-- convert large unpacked Boolean array to packed

Observation 2: AES tests for array performance using a combined workload.

In summary, the test resuits indicate that the arrays allocated within the execution scope and directly
accessed via indexing (rather than via access variables) generally show the best run-time performance.
A packed array may be manipulated as quickly or more quickly than an unpacked array for all tested
cases (the exception is when access is via array slices for arrays allocated “on stack”). This effect is
especially pronounced for Boolean arrays.

The AES uses a consistent format for its tests of array operations. Instead of testing a single operation
(e.g., assignment of an integer to a one-dimensional array), a mix of many related operations is per-
formed (e.g., assignments to one-, two-, and three-dimensional arrays). These test sequences are ap-
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plied to arrays that are aflocated differently along two dimensions: representation {packed vs. unpacked
arrays), and creation (three types of declaration). (The AES output refers to these declarations as “On-
Stack,” “Library Record,” and “Heap Record” [see below].) The timings provided as output from these
tests are useful for providing information on the runtime performance trade-offs between allocation
strategies; however, the measured times represent a mix of instructions that cannot be related to indi-
vidual array operations. The times are also usefully employed when the test is performed on different
releases of software and/or hardware and the results compared.

The AES uses three allocation methods for test arrays (the following examples are for unpacked arrays;
the packed forms use the same form with the addition of pragma PACK).

Common type declarations:

type ONE_DIM U is array (1 .. 5) of CHARACTER;
type TWC _DIM U is array (0 .. 3) of ONE_DIM U;
type THREE_DIM U is array {(BOOLEAN) of TWO_DIM U;

-~ The access types required for this test

type REF_ONE_DIM U is access CNE_DIM_U;
type REF_TWO DIM U is access TWO_DIM U;
type REF_THREE_DIM U is access THREE_DIM_ U;

* AES “On Stack” Allocation

declare

-- Variables of the required array types declared on the stack
ONE_U_1, ONE_U_2 : ONE_DIM U;

TWO_U_1, TWO U_2 : TWO_DIM U;

THREE_U_1 : THREE_DIM U;

begin
-- timed test;
end;

* AES “Library Array” Allocation

declare

~- Variables of the required array types are
-- declared in the following library.

use TIO2AA; -- library unit containing all array
-- and pointer definitions and declarations

begin
-~ timed test;
end;

* AES “Heap Record” Allocation

declare

-~ Variables of the required array types declared on the heap
ONE_U_1, ONE_U_2 : REF_ONE DIM U;

TWO_U_1, TWO U 2 : REF_TWO_DIM U;

THREE_U_1 : REF_THREE_DIM U;
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begin
-- timed test;
end;

Declarations in procedures were not tested:

J procedure TIOZA is

ONE_U_1, ONE_U_2 : ONE_DIM_U;
TWO_U_1, TWO U_2 : TWO_DIM U;
THREE_U_1 : THREE_DIM_U;

begin
-- timed test;

end;

The reason for this omission is not known.

AES Test Results:
Configuration 1, DIY_AES Version 2.0, Tests TI02A-F.

I.5. TIO02A

This test examines the efficiency

of

manipulation, in particular, the cpu
component indexing. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
three-dimensional

in library packages. One-, two- and

character arrays are used.

Array Component Indexing:

frm— i ——— fmm—mm————— tommme————
| Array | On-stack | Library
| Type | Array |  Array
o m e —— tomm e o —————
| Unpacked | 664us | 96lus
| Packed { €64us | 890us
tmmmm—m——— fmmme e tommmmm———

I.6. TI02B

This test examines the efficiency
manipulation, in particular, the cpu time taken in
assignments. Timings are taken for

character arrays are used.

Array Assignment:

tmmm—— B e B et
| Array | On-stack | Library
| Type { Array | Array
$mmm— mmmmmt e m e ———— tmmmm——— --
| Unpacked | l168us | 170us
| Packed | 168us | 170us
b ——— B B

I.7. 7TI102C

This test examines the efficiency

of

array

object

time taken in

O
1
]
[}
]
]
]
[]
]
L]

+

array

cbject
array

both packed and
unpacked arrays, declared on the stack, on the
in library packages. One-, two~ and three-dimensional

tmmmm———— +
| Heap

| Array
tomemm———— +
| 182us

] 183us
o ————— +
of array

heap and

okject
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I.10.

manipulation, in particular, the cpu time taken in array
comparisons. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. One-, two- and three-dimensional
character arrays are used.

Character Array Comparison:

b - ———— Frr e —————— o o +
| Array | On-stack | Library | Heap i
i Type | Array |  Array | Array |
P borm i ——— A ———— o ——— +
| Unpacked | 410ns | 410ns ¢ 410ns |
| Packed | 4i0ns | 410ns | 410ns |
b ———— b ——— P ———— A —— +

TI02D

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in
performing logical eperations on boolean arrays. Timings
are taken for both packed and unpacked arrays, declared
on the stack, on the heap and in library packages.

Logical Operations on Boolean Arrays:

Fom o —— dmmm - ——— b ————— o ————— +
} Array | On-stack | Library | Heap }
] Type | Array { Array | Array |
temm——e———— b ———— o ————— o ———————— +
| Unpacked | S87us | €28us | 805us |
| Packed { 196us | 203us | 231us |
fommmm———— fommmmm,———— dommm————— pommmmm———— +

TIO2E

This test examines the efficlency of array object
manipulation, in particular, the cpu time taken in array
concatenation. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in 1library packages. An unconstrained one-dimensiona!
integer array is used.

Test falled. Wrong TEST_ID in TEST.TST
TIQ2F

This test examines the efficlency of array vbject
manipulation, in particular, the cpu time taken in array
slicing. Timings are taken for both packed and unpacked
arrays, declared on the stack, on the heap and in library
packages, An unconstrained one-dimensional integer array
is used.

Array Slicing:

toevmemm———— Fmm—— cmmn b ————— b ———— +
| Array | On-stack | Library | Heap |
i Type { Array I Array { Array |
o e - e ———————— o ———— o ———— +
| Unpacked | S566us | 573us ¢ 1.48ms |
| Packed | 584us | 573us | 1.48ms !
o —————— Fro o e b s e e e R e T +

16
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Observation 3: ACEC tests comparing operations on arrays with and without constraint checking.

These ACEC tests provide a comparison between instruction sequences with checks enabled and
checks disabled. However, due to emrors in the command files provided for running the tests, the major-
ity of the comparisons are invalid (see below). Useful data was obtained from SSA repont “3 Reterences
To Same Array In Expression,” SSA report “Amrays - Assignment To 1 Dimensional Array of Real” for
test $855 compared with ss169 and SSA report “1D Array (Same Index) Both Sides of Assignment
Stmt.”
ACEC Test Resuffs:
Configuration 1, ACEC Release 2.0, SSA Reports of “Language Feature Overhead™

“Array of Bigint,” page 17

“Array of Character Strings,” page 18

“3 References to Same Array in Expression,” page 18

“Arrays - Assignment to 1 Dimensional Array of Real,” page 19

“Arrays - 2 Dimensional Arrays of Real,” page 19

“Arrays - Assignment to Array of Real,” page 20

“1D Array (Same Index) Both Sides of Assignment Stmt,” page 20.

Note that several tests are invalid since checks were disabled for all of the tests performed. This was
due to an error in the control files provided with the test suite. These SSA reports are marked with the
phrase "¥invalid result, checks disabled.

Test Execution Bar Similar
Name Time Chart Groups
ss53 1.28 AR AN TR R I AR R AN AT R TR RRN R AR NN T
ss284 1.28 LEEAR AR RS SRS RS RS LSRRl
5554 1.42 XXX A IR S RX A RN AA R R AN A AT RN AT AN H
85285 1.42 WAL ALSARRSEALL LSS ALES AR ERaTS !
CMU/SE!-92-TR-32 17




Individual Test Descriptions

ss53 11 := i1 ( eyr ) ;
-- Reference to subscripted array of int, without checking.
5554 ii = 11 (ei + 1 )
-- Reference to subscripted array of int, without checking.
58284 11 := 141 ( bigint (ei } } ;
-~ fetch from array of bigint.
58285 1i := 1i1 ( bigint ( ei + 1 ) ) s
-~ fetch from array of bigint, fold term into address computation

Test Execution Bar Similar
Name Time Chart Groups
88243 1.28 AR AR AN T AN NN K RAANKAANANER R NN E R 1

8853 1.28 I 2222322232223 222223 322222222 222 ¢ ad i

Individual Test Descriptions

et = o e o 1 e M b A8 = e o e A e Tl R . . Y e e S o

Compare reference to array of integers to an array of a subtype of string.

SUBTYPE ¢2 IS String (1 .. 2 ) ;
TYPE trans_type IS ARRAY ( int’({0) .. int’(255) )} OF c2 ;
trans : trans_type ;
TYPE rec_array IS ARRAY ( int’{1l)..int’{4) ) OF byte ;
SUBTYPE c8 IS string (1 .. 8 } ;
cce, hex : c¢8 ;
ss53 41 = {1 (ei ) ;
-- Reference to subscripted array of int, without checking.
ss243 hex (1 .. 2} := trans { 11 ) ;
-~ access to array of 2 character strings and assign to a slice

3 References To Same Array In Expression

Test Execution Bar Similar
Name Time Chart Groups
s5193 8.52 LR AR S 2R a2 e 2SR 22 s 2y i

ssl174 10.60 RN A AR NN AN AN AR AR RF N RN RRA AN |

33174 xx = el (ei + ¢ ) +el {ei +# 1) + el (ei) ;
-~ 3 references to same array in expression, subscripting
-~ expression has constant terms with subscript range
-- checking enabled. Bounds checks can be merged.
83193 xx = el {ei +2 ) +el (ei + 1) +el (ei) ;
-~ 3 references to same array in expression, subscripting
~~ expression has constant terms with subscript range checking
-- suppressed. Subscripting expression has common subexpression.
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Arrays - Assignment To 1 Dimensional Array Of Real

Test Execution Bar Similar
Name Time Chart Groups
ss55 0.78 xwww |

85169 0.78 S22 |

58645 1.28 ARXRNES i

$s53 1.28 ERRAN SN

258309 1.28 WU i

ss54 1.42 EAERARRN

ss646 3.95 AR RN TR AR RANNE R R T RN |
85647 6€.26 AR TR RN RN AR RRK RN RN AR KA AN AN

ss53 ii = i1 (ei ) ;
-~ Reference to subscripted array of int, without checking.

5554 i1 = 41 (ei + 1)
-- Reference to subscripted array of int, without checking.

ss55 i1 == 43 (1) ;
-~ Reference array with a constant subscript, without checking.

ss169 ii := il (1) ;
-- fetch from 1D array with range checking, using constant subscript

85173 ii := 41 (ei + 1) ;
-- Reference to subscripted array of int, with checking.

ss30% hue := stat ( ei ) ;
-- access array of an enumerated type

ss645 one := el {( ei ) ;
-- fetch from 1D array, checking suppressed

53646 one :=e2 {ei , ej ) ;
-- fetch from 2D array, checking suppressed

ss647 one :=e3 {(ei , ej , ek ) ;
-- fetch from 3D array, checking suppressed

[ T, ——— - ——— - - 2

Arrays - 2 Dimensional Arrays of Real $¥Invalld result, checks disabled

Test Execution Bar Similar
Name Time Chart Groups
ss646 3.95 E2 I L e 2 T 2 2 i

85759 3.96 L I T2 R T R R

55762 3.9¢ 122238222222 2 2 A s S e e 2 T X222 22

e2 : ARRAY { int’{1)..int’ {10) ,int’{1}..int’ (10} ) OF real
= { dnt? (1)..int’ (10) =>({ int’(1)..int’ (1C) =>1.0)};
ei, ef, ek : int := 1;

55646 one := e2 ( ei, ei ) ;

CMU/SEI-92-TR-32

19




-- fetch from 2D array : No constraint checking.
-~ =8646 and ss759 SHOULD take the same time.

55759 one := e2 ( ei, ej ) ;
-- Fetch value from two dimensional floating point array.
-=- No constraint checking.

55762 one := e2 ( ei, ei )
-~ Fetch value from two dimensional floating point array.
-- Constraint checking.

Arrays - Assignment to Array of Real )nvalld result, checks disabled

e 9t e s i e O e e o D o R A S 0 7 o VR D P o e 4 e T o T o O T o . - o —

Test Execution Bar Similar
Name Time Chart Groups
ss5761 1.28 Twk ek |
88758 1.29 REENR AW l
33759 3-96 L2202 22222 RS S B d s ’
55762 3_96 L2222 2222222 RSS2 2] l
33760 6.27 L 22 AR X222 223223 2222822222222 FE] ‘
33763 6'28 ARAARRE PR RTNRAN AN RANNE AR TR T T hww |
Individual Test Descriptions

853758 one := el {( el ) ; -~ No constraint checking.

~- Felich from one dimensional array.
53759 one := e2 {ei , ej ) ; -- No constraint checking.

-~ Fetch from two dimensional floating point array.

ss760 cne := eJ (el , e , ek ) ; -- No constraint checking.
~-= Fetch from three dimensional floating point array.

35761 one := el ( ei ) ; -~ Constraint checking.
-~ Fetch from one dimensional array.

38762 one :=e2 {ei , ej ) ; -=- Constraint checking.
-~ Fetch from two dimensional floating point array.

95763 one := e3 (ei , e} , ek ) ; -- Constraint checking.
-- Fetch from three dimensional floating point array.

1D Array (Same Index) Both Sides Of Assignment Stmt

Test Execution Bar Similar

Name Time Chart Groups

55192 7.21 WhANE XN AN NN NN RN KT R AR R AR IR PR |

85170 7.89 HERARTARR P AR N AR RN AN R AT ARk {
Individual Test Descriptions

53170 el (ei ) := el { ei ) * one :
-- Fetch from and store into 1D array (same index) on both
-~ left and right side of assignment statement with
-= subscript range checking enabled. Subscript
-~ computation need only be verified once.

20
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ss192 el (ei ) :=el (el ) * one ;
-- Same subscripting expression of left and right side of
-- assignment statement. Checking suppressed.

- A 1 " T o S Wt T e o e A e o T e e S e e o el e o e A T L e R A e W e B S S0 S

Observation 4: ACEC tests of the effectiveness of packed representation.

The tests included here all specify a small array of unsigned integer values, where the base type is a
range of 0..2". The values of ntested are 3, 5, 7, and 16, but not all test results were available for the
target configuration.

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Report “Ancillary Data.”

Identifiers of the form “a_#" indicate the base type for packing, where # is the minimum number of bits
required to hold the value. identifiers of the form “a#(1)” indicate a celi of an array of the base type.

Note that the percentage value in "packing achieves x% of maximum" for the SSA report Ancillary
Data is computed incorrectly and should be ignored.

Ancillary Data - List

- - - -— - -~

88657 a_5’'size =8, a5(l)’size = 8, packing achievesl00% of maximum

83662 a_7'size = 8, a7(l)’size = 8, packing achievesl00% of maximum

- o = o e 40 - o o e -

55672 a_l5'size =16, al5(l}’size =16, packing achievesl100% of maximum

- - - - v o v O - - R i

85677 a_l16'size =16, al6(l)’size =16, packing achievesl00% of maximum

o ke o D e o Bt P o Tt el R o B e S g T s e e S = o = . A o it o

Observation 5: ACEC tests of array access methods.

These tests use simple assignments and various types of shifts to iterate through the array. While some
variation is checked, including arrays of real, integer, and Boolean quantities and checks on and off, the
coverage is not orthogonal. Also, note that the SSA report “Array Assignment” reports results from as-
signments to two types of arrays: e1, which holds floating point numbers, and i1, which hokls integers.

ACEC Test Results:
Contiguration 1, ACEC Release 2.0, SSA Reports of “Coding Style Variations™:
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“Array Assignment”

“Shift Packed Boolean Array™

Coding Style vVariations

o 8 " e = e A - = 1 o T ] oy o S h " W o 1 W e > Y e Tt

Array Assignment

o o 2 1 e i o S o e Ak A S Sl B e P T 4 A = Yo v o Al T e A = = Y = W W S A 0 % o e O T e -

Test Execution Bar Similar

Name Time Chart Groups

ss81 7.56 ARERKAREHN :

ssl71 7.686 NIRRT A TR ER i

55388 7.80 RXRE RTINS |

ss77 8.83 222 228002

ss78 8.83 KNNKARARNRRSE i

5879 8.83 T2 123223 028 i

ss80 9.93 KA RE RN RERE

s$s8209 25.50 ERA A AR R R AN TR RAN SR NIRRT I AR SN RR |
Individual Test Descriptions

All of these represent different ways of assigning an array of ten
elements to one. ss81, ss171, and 55209 refer to integers, the rest
to reals.
ss77 el := { 1..10 => 1.0}
-~ aggregate with range specification
ss78 el := (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ;
~~ aggregate with elements positionally specified
5579 el := xel ;
-~ GOpY array
5380 FOR i IN 1..10 LOOP el (1) :=1.0; END LOOP;
-- Array assignment using a FOR loop to set each element to 1.0.
ss81 FOR 1 IN 1..10 LOOP 11 (L) =4 ; END LOCP ;
-- Array assignment using a FOR loop to set the “ith” element to "in".
ss171 FOR i IN 1..10 LOOP i1 (1) := 1 ; END LOOP ;
—~ subscript with FOR loop index (in range) compile time range
check possible
55209 11 := 1 ;
WHILE ii <= 10
LOOP
11 ( 11 ) ==1i ;
11 2= 14 + 1 ;
END LOOP ;
-- WHILE loop comparable to the FOR loop in ss81
35388 el (1) :=1.0; el (2 ) := 1.0 ; ... el (10 ) = 1.0 ;
-- sequence of literal assignment statements to array components.

Shift Packed Boolean Array

i o 1 e e 7 e et et o P B W o 4 TR = o m m w m a m  m e k  A S m mn T m

Test Execution Bar similar
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Name Time Chart Groups
58524 3.38 * |
33525 83-00 (2222222322220 80 X223 22222322 23R X |

Two alternative ways of performing the same operation, one using
slice aggregate assignments, the other using an element by element
loop.

TYPE balé_type IS ARRAY ( 1..16 )} OF Beolean ;
PRAGMA pack ( balé_type ) :
ba : balé_type ;

55524 ba ( 1..15 ) :=ba { 2..16 ) ; ba ( 16 ) := False ;
-- Shift a packed Boolean array using slice assignments.
-- Could be implemented as integer divide.

O e i e e S o S 2 o i A A W e D o o e i e e et e

85525
FOR i1 IN 1..15 264.1
LOOP
ba (1) :=ba (1 +1) ;
END LOOP ;

ba ( 16 ) := False ;
-- Shift a packed Boclean array using a FOR loop and
-- element by element assignment.

References

® none
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2.3 Check Suppression

Question: How does performance change when checks are tumed off?

Summary: Suppressing runtime checks can increase execution speed. However, the increase is
dependent on the interaction of compiler optimization and the operations and data subject to runtime
checking. Removal of constraint checks also generally decreases the size of the executable code.

Discussion: Constraint checking is often cited as reducing program performance. Before suppressing
checks, it is useful to know the actual cost of constraint checking. The AES test used in this report times
code segments which use many individual checks. They may be considered representative of a worst
case use of checks. Similarly, the information on code size changes gives an indication of the amount
of space checking code requires.

There are several anomalous results. In one case this is an error in the AES test TO07. The others rep-
resent unexpected behavior on the part of the Verdix Ada Development System.

Conflguration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MCe68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVMES45 VMEbus chassis.

Compller: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: AES Test TO07, found that for renresentative blocks of code the suppression of all
checks and selected checks improves performance in most cases.

As can be seen from the AES output below, test execution time improved when INDEX_CHECK, AC-
CESS_CHECK, DISCRIMINANT_CHECK, LENGTH_CHECK, and RANGE_CHECK were individu
or collectively suppressed. However, execution times did not improve when OVERFLOW_CHECK and
STORAGE_CHECK were suppressed. The measured time unexpectedly increased when DIVI-
SION_CHECK was individually suppressed. Observation 2 examines these performance anomalies.

AES Test Results:
Configuration 1, DIY_AES Version 2.0, Test TO07 ~ (9 digits of precision).

0.7. 71007

This test determines whether pragma SUPPRESS makes any
appreciable difference to the efficiency of Ada code.

In addition to pragma SUPPRESS, the following
implementation dependent pragma was used during the
execution of this test.
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pragma SUPPRESS (ALL_ CHECKS);

The following table shows the CPU times to execute blocks
of code when the specified checks are left in and when
thay are suppressed.

It also shows the time for each block of code when the
statement pragma SUPPRESS (ALL_CHECKS); is lncluded.

In each case the block of code timed makes heavy use of
statements that require the specified type of checking.

o o e i e Ty e ————— Ve —————— +
i l | ! 1
I Type of check | With the | With check | All checks |
{ | check in | suppressed | suppressed |
] ! 1 i |
b — -, —————— +- ———— e ——————— prmm e ——— +
! | | f |
| INDEX_CHECX | 1.97s | 1.03s | 1.63s |
| ACCESS_CHECK i 1.08s | 961ms | 9elms |
| DISCRIMINANT CHECK | 1.69s5 | 1.27s | 1.27s |
{ LENGTH_CHECK { 1.82s | 1.71s | 1.29s |
***| RANGE_CHECK | 1.64s8 | 145ms | 148ms |
i DIVISION_CHECK | 1.44s | 1.57s | 1.36s |
| OVERFLOW_CHECK | 1.55s | 1.55s | 1.55s |
! STORAGE_CHECK | 1.48s | 1.49s | 1.49s |
} I { 1 i
D 4ommrm————— fmm e ————— Frmmm e +

*** This test is erroneous. See Ohservation 2.

Observation 2: The executable code trom AES test TO07 was examined with the VADS debugger for
size and pertormance effects. Suppressing checks causes code size to change, ranging from a
decrease of 56% to an increase of 14%. Both individual check suppression and full suppression were
tested. Further examination of the code explains some of the performance anomalies noted in
Observation 1.

The AES test hamess performs two separate runs of test TO07. The first examines when checks are
individually suppressed, the second run suppresses all checks and repeats the individual timings. The
code segment timed for each class of checks is intended to exercise the individual check. The INDEX_-
CHECK section performs assignments to individual array elements, for example.

The test avoids actually raising any exception.

As defined in the Ada Language Reference Manual, pragma SUPPRESS disables checking only within
the innermost enclosing declarative region. Therefore other checks should be active during individual
tests, if applicable to the tested operation. This rule holds true in the examined code.

AES Test Results;
Configuration 1, DIY_AES Version 2.0, Test TI07.
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Table 1: Generated Code Sizes AES Test TO07

Checking | Individual Check All Checks
On off oft
Check
#Bytes | #Bytes | %On® | #Bytes | % On®
E— e el
INDEX_CHECK 1760 770 438% | 1120 63.6%
ACCESS_CHECK 170 12 71.8% 122 71.8%
DISCRIMINANT_CHECK 210 120 57.1% 120 57.1%
LENGTH_CHECK 4032 3648 90.5% | 2440 60.5%
RANGE_CHECK 352 0 0.0%° 0 0.0%C
DIVISION_CHECK 1036 1180 | 1139% | 816 78.8%
OVERFLOW_CHECK 456 456 | 100.0% | 430 94.3%
STORAGE_CHECKY 112 112 | 100.0% 100 89.3%

% On = (# bytes checking on / # bytes individual check off) * 100

% On = (# bytes checking on / # bytes all checks off) * 100

Invalid test result.

Size does not include system routines called to perform runtime allocations.

oowm

The code sizes are the number of bytes for the test code only, excluding looping and anti-optimization
code. It should be noted that the looping and anti-optimization code is located in a region where checks
are suppressed and can potentially benefit from suppressing checks, but should not be affected by test-
ing the suppression most individual checks (with the possible exception of INDEX_CHECK). For allo-
cation of new objects (used to exercise STORAGE_CHECK), a call to a run time allocation routine was
made. The size of this routine was not known and is not included in the recorded size.

Explanations for a number of individual anomalies were sought:

* Why does suppressing INDEX_CHECK individually yield a better execution time
than suppressing all checks?

Less code is generated by the compiler when the check is individually suppressed
than when all checks are suppressed.

® Why are execution times greatly reduced when RANGE_CHECK is suppressed?
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Observatlon 3: Static instruction timing was examined for selected code segments of AES test TO07
using configuration #1 (DIY_AES Version 2.0). The calculation was developed by examining test code
with the VADS debugger, then deriving the static timing according to the method described in Chapter
11 of the MC68030 Enhanced 32-Bit Microprocessor User's Manual, Second Edition. Chapter 11
provides a set of rules for timing which allows the user to account for the pipelined execution of the
microprocessor by combining times of adjacent instructions which are eligible for overlapping execution.
Additional work must be performed to account for addressing modes used and instructions with data

The test was optimized to an empty loop when checking was suppressed, invalidat-
ing the test. The test performs assignment to locally declared variables, which are
not referenced after assignment. With checking on, an exception could occur, so the
loop could not be removed. Without range checking, and with the assignment value
held constant, the compiler eliminated the assignment.

Why does execution time increase when DIVISION_CHECK is individually
suppressed?

The code size expanded, resulting in a larger test. The reason for increased code
size is not known.

Why does the execution time remain unchanged when OVERFLOW_CHECK is
suppressed (both individually and all checks)?

The size of code generated is the same when the individual check is suppressed and
is only 5.3% less when ail checks are suppressed. The 68030 instruction set includes
a single instruction which can test the overflow condition, resulting in the small ex-
pansion factor. The AES test was not sensitive enough to detect the smalt difference
in code size.

Why does the execution time remain unchanged when STORAGE_CHECK is
suppressed (both individually and when all checks are suppressed)?

This test uses the new allocator to test storage check. For VADS, this involves a call
to a run time routine for heap allocation. The code for this routine was not available
for inspection. However the expansion of the visible code showed no increase in size
when the STORAGE_CHECK was suppressed and only a 10.7% reduction in size
for suppressing all checks. Assuming a relatively constant value for the execution
time of the allocation routine, the AES does not detect the small difference in code
size.

dependent execution time.

Manual calculation of times was unsatistactory for a number of reasons:

1.

The calculation was time consuming and could not be verified. (It was not possible
to analyze any of the individual test sequences completely.)

The method provided uses time values that do not account for the alignment of
instructions on word boundaries in memory.

Assumptions must be made about the effects of the instruction and data caches,
and are not empirically verifiable.

Automated support for time computation may make static timing analysis practicat.
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Simple observation of code expansion factors, derived through the VADS debugger, proved to be suf-
ficient for examining timing anomalies.
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2.4 Data Location

Question: What is the performance effect of declaring data locally or outside the executing scope?

Summary: Simple data objects are accessed most efficiently when declared in a local block.
Operations performed on variables declared in library packages are slightly less efficient. Local
declarations, using the new operator, are the least efficiently accessed, and are subject to possible
storage exhaustion in long running applications.

Discusslon: in Ada, programs may declare variables and constants in several locations within the pro-
gram unit:

¢ {n a package specification or in the declarative parnt of a package body

¢ in the declarative part of a subprogram or task body

® in the declarative part of a block

* implicitly in loop statements

Although the syntax of declarations is the same for each case (with the exception of implicit declaration
in loop statements), compilers may use different strategies for data declarations depending upon their
location. For instance, declarations in library units may be treated differently than those Jocal to a block.

Performance might also vary according to the type of the object declared. Ada atlows for the declaration
of simple variables, arrays and records. Objects may be referenced indirectly via pointers, and the user
can specify the representation of variables.

inorder to reduce this question t0 a tractable size, emphasis was placed on examining a limited number
of data types (simple variables, records, and arrays) declared in a small number of locations (within a
local block, at the start of a procedure, and in a library unit). This follows the model provided by the Ada
Evaluation System.

The AES tests T'01A-D and TI02A-F examine the performance of records and arrays allocated in dif-
ferent locations (see Observation 1 on page 34). Each test compares the three types of storage and
tests two representations of the object (e.g., packed vs. unpacked for arrays). This makes a total of two
triplets of matched observations for each test, with six sub-tests for each test.

Figure 2-1 on page 32 summarizes the results from AES tests TI01 and T102. Each type of storage is
ranked within the test (from fastest to slowest) and a summary bar chart presents the counts for each
storage type. Observation 1 on page 34 contains the data used to prepare the chart and also presents
the Ada declarations used by the AES for “stack” (declaration in a block); “library” (use statement within
a block) and “heap” (new allocator within a block).
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15 Allocation strategies ranked by execution speed (AES Tests Ti01 and T102)
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Figure 2-1: Summary Graph of AES Tests Ti01 and Ti02

Figure 2 and Figure 2-3 on page 33 show the individual test times for AES tests TI01 and T102 summa-
rized in Figure 2-1. For comparison purposes, it shouid be noted that *heap” allocations were created
by use of access types, while “stack™ and “library” allocations were created by using regular declara-
tions. Any conclusion about heap allocation using the AES data is necessarily also an observation com-
paring standard type records and arrays with variables addressed by access {pointer) types.
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The AES tests TM05 and TM07 (Observation 2 on page 38) check for potentially undesirable heap stor-
age characteristics. The tests indicate that heap storage creep (storage not returned to the free list after
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deallocation) and fragmentation (division of available free storage into unusable small fragments) can
occur.

The ACEC SSA Repont entry titled “Reference Variables in Different Packages” (Observation 3 on page
39) compares simple variables and smail arrays declared locally and in other packages. It is difficult to
determine how to group comparable tests. In the single clearly comparable case, tests ss469 and $s470
show no difference in performance between simple variables declared locally and in an outsiue pack-
age.

The ACEC SSA Report entry titied “Reference Oth .. 1024 Real Variable in Package” (Observation 4 on
page 40) indicates that the order of declarations in a package (the AES library declaration) has no etfect
on performance.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: AES tests of performance for several types of variable declarations.
The AES tests three locations for declaring variables:

® Stack -- The AES uses a declaration of the form:
type ARRAY TYPE is ...;

declare

AN_ARRAY: ARRAY TYPE;
begin

-- Test of performance using AN_ARRAY
end;

* Library -- The AES uses a declaration of the form:

package LIBRARY_ARRAY is
type ARRAY TYPE is ...;
LIB_ARRAY: ARRAY TYPE;
end LIBRARY_ AKRAY;

with LIBRARY ARRAY;
declare
use LIBRARY ARRAY;
begin
-- Test of performance using LIB_ARRAY
end;
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® Heap -- The AES uses a declaration of the form:

type ARRAY_TYPE is ...;
type ARRAY POINTER is access ARRAY TYPE;

declare

REF_ARRAY: ARRAY_POINTER;

begin

REF_ARRAY := new ARRAY TYPE;
-- Test of performance using REF_ARRAY

end:;

Note that “heap™ allocation uses access types and the “stack” and “library” allocation use direct decla-
ration. Thus comparison of heap with stack and library allocation is also a comparison of access types
and “regular” variables.

AES Test Results:
Contiguration 1, DIY_AES Version 2.0, Group |, Tests Ti01-2.

I. Group I ~ runtime Efficiency Tests

I.1.

I.2.

TIO1A

This test examines the efficiency of record object
manipulation, in particular, the cpu time taken in
component selection. Both simple and variant records are
used which are declared on the stack, on the heap and in
library packages. The records contain scalar components.

Record Component Selection:

tmmmm fmmmm————— + e ——— +
| Record | On-stack { Library | Heap |
| Type | Record | Record | Record |
B el b —— fommmm————— b —————— +
| Simple | 32.5us | 40.2us | 99.1lus |
| Variant | 51.5us ! 52.6us | 74.8us |
e fmmmm—————— oo ————— L T, +

TI01B

This test examines the efficiency of record object
manipulation, in particular, the cpu time taken in
component selection. Both simple and variant records are
used which are declared on the stack, on the heap and in
library packages. The records contain record components.

Record Component Selection:

L s e b — o ——— R +
| Record | On-stack | Library | Beap |
|  Type | Record | Record | Record |
b o ——— fem e ——— bmmm e —— +
| Simple | 32.5us | 40.2us | 100us 1
{ Variant | 155us | 155us |} 290us |
fomm e ———— $mmm—m————— L e Fmmm e +
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1.3.

TI01C

This test examines the efficiency of record object
manipulation, in particular, the cpu time taken in record
assignment. Both simple and varjiant records are used
which are declared on the stack, on the heap and in
library packages. The records contain both scalar and
record components, the variant records containing two or
three discriminants.

Record Assignment:

tomm i ——— brr———————— o ——— fomr e ———- +
| Record 1| On-stack | Library | Heap |
| Type | Record | Record | Record |
. tomm e ——— tmemem I —— +
| Simple | 27% s | 286us | 293us |
| Variant { 1.59ms | 1.6lms | 1.96ms |
tommm o —e——— b ———— b ——— +

TIO1D

This test examines the efficiency of record object
manipulation, in particular, the cpu time taken in record
comparison. Both simple and variant records are used
which are declared on the stack, on the heap and in
library packages. The records contain both scalar and
record components, the variant records containing two or
three discriminants.

Record Comparison:

4= —$m- e m———— fommr———— +
{ Record | On~stack | Library | Heap |
| Type | Record | Record | Record |
B trmm————— e L T —— +
| Simple | 410ns | 410ns | 410ns |
| variant | 93.3us | 77.5us | 250us |
T Fmm— L - B +

TI02A

This test examines the efficiency of array object
manipulation, 1in particular, the cpu time taken in
component indexing. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. One-, two- and three-dimensional
character arrays are used.

Array Component Indexing:

o e e e R o m————— b ————— +
| Array | On-stack | Library | Heap i
| Type | Array | Array | Array |
Fom e pommm————— drmmm e b +
| Unpacked | 664us | 96lus | 977us |
| Packed | 664us | 890us | 665us |
Fom $mmmmm——m—— drmmm————— R e +
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I.6. TIO02B
This test examines the efficlency of array object
manipulation, in particular, the cpu time taken in array
assignments. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in 1library packages. One-, two~ and three-dimensional
character arrays are used.
Array Assignment:
tommmm————— b Fom— e ———— D e +
{ Array | On-stack | Library | Heap !
| Type | Array |  Array | Array |
v ——— b ————— o ———— e ———— +
| Unpacked | 168us | 170us | 182us |
| Packed j 168us | 170us | 183us |
Fomm e o m——————— Fommm e —— e S +
I.7. TI102C
This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in array
comparisons. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. One-, two- and three-dimensional
character arrays are used.
Character Array Comparison:
Fmm———————— Form e ——— b —— trmm—— - +
I Array | On-stack | Library | Heap |
| Type | Array | Array | Array |
tm——— - ——- T +
[ Unpacked | 410ns | 410ns | 410ns |
| Packed { 410ns | 410ns | 410ns |
tmm——————— e ——————— b ——— b ———— +
I.8. TI02D
This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in
performing logical operations on boolean arrays. Timings
are taken for both packed and unpacked arrays, declared
on the stack, on the heap and in library packages.
Logical Operations on Boolean Arrays:
P ——— Fmmm————— Formm——————— trmmm————
| Array | On-stack | Library 1 Heap !
{ Type | Array | Array | Array |
o ———— dmmm e ——— tomem e ———— et +
} Unpacked | 587Tus | 628us | 805us |
| Packed I 19%6us | 203us | 231us |
Frem e dmmm e ———— B P +
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TI02E

This test examines the efficlency of array object
manipulation, in particular, the cpu time taken in array
concatenation. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in 1library packages. An unconstrained one-dimensional
integer array is used.

Test falled. Wrong TEST_ID in TEST.TST

TI02F

This test examines the efficiency of array object
manipulation, 1in particular, the cpu time taken in array
slieing. Timings are taken for both packed and unpacked
arrays, declared on the stack, on the heap and in library
packages. An unconstrained one~dimensional integer array
is used.

Array Slicing:

fram——— —t—— + o ——— +
| Array | On-stack | Library | Heap |
i Type | Array | Array | Array |
- -—+ ———fm e ——————— Fmmm— - ——— +
| Unpacked | 566us | 573us | 1.48ms |
i Packed | 584us | 573us | 1.48ms |
- —— b m e ——— fmmm e —— +

Observation 2: AES Storage management tests for heap storage creep and fragmentation.

AES Test Results:

Configuration 1, DIY_AES Version 2.0, Group M, Tests TM06-TM07.

M. Group M ~ Stcrage Management Tests

M.7.

TMO0S

This test examines the creeping of heap storage space
when returning unconstrained types from subprograms.

"Creeping™ loss of storage can occur when subprograms
return large unconstrained arrays or records. This is
because it may be difficult for the runtime System to
monitor and later reclaim this space.

Returning unconstrained records does cause ‘“creeping®
loss of heap storage,

Returning unconstrained arrays does cause "creeping" loss
of heap storage.

™07
This test checks for fragmentation of heap storage.

The test checks whether the space recovery mechanism
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merges adjacent areas of free memory, splits previously
allocated large areas into small ones, or otherwise
fragments the heap storage area.

The whole of heap storage was allocated using large
records, deallocated, allocated sing small reccords,
deallocated, then reallocated with the same large
records. The total amount of space allocated in each
case, and the maximum allocatable record size, was
compared. Fragmentation of heap storage does occur.

Observation 3: ACEC test of performance variation due to location of the data declaration.

ACEC Test Results;
Configuration 1, ACEC Release 2.0, SSA Report “Reference Variables Defined in Different Packages.”

Reference Variables Defined In Different Packages

- - - . e 8 2 e o S S o o T e e o -  _

Test Execution Bar Similar
Name Time Chart Groups
$8469 0.78 * 1

53470 0.78 * 1

55476 1.56 > |

s8471 1.68 * I

85474 2.52 *x {

88475 2.70 *x

ss477 10.90 1222222041

5472 13.30 EhERRRRE KWK |
55473 42'30 A2 32X 222222222 R2sd22 3232222 X 2R 22 ) !

——— - - e - - s e e > -

- - - - e 8 " e o i i A e A A Uy > o —

Individual Test Descriptions

——— - - ——- - e e o e = e i i e e

-- explore overheads necessary to maintain addressability

35469 pU467t0l.a := p0467t02.d ;
-- reference variable defined in two packages

55470 p0467t01l.a := p0467t01.b ;

-- reference variable defined in 1 external packages

ss471 p0467t0l.c ( local_one ) := local_one + p0467t02.d + global.ten ;
-- reference variable defined in local scope plus 1 -- external package

et~ " . 30 T o T o o o o > - - —_————

ss472 FOR 1 IN p0467t01.c’ RANGE LOOP
p0467t0l.c(i) := i + p0467t02.4 + global.ten ;
END LOOP ;
-- reference varjiable defined in three different packages
55473 FOR i IN p0467t01.c’RANGE Loop
p0467t0l.c(i) := i + p0467t02.d + global.ten ;
procd ;
END LOOP ;
-~ reference variable defined in four different packages
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55474 ii := p0467t0l.a + p0467t02.e ;
p0467t0l.c(l) :~ p0467t0l.b + p0467c02.f + ei ;

-- reference variable defined in three different packages
-- Multiple references to packages so might share addressing setup.
83475 p0467t03.g ( global.ei } :=

1 - p0467c0l.a + p0467t02.e + p0467L03.1i - local_one ;
-- reference variable defined in two different packages
-~ Reference one package twice.
ss476 p0467t03.h ( ei ) := ten ;
-- reference variable defined in two different packages
$s477 FUR 1 IN int’ (1)..int’ (10) LOOP

p0467t03.9 ( i ) := p0467t03.h ( i) ;

END LCOP ;

-- reference variable defined in one external package

Observation 4: ACEC test for performance variation based on order of deciaration.

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Report “Reference 0th..1024th Real Variable in Package.”

-———— - —— e e e e

Langquage Feature Overhead

Reference Oth .. 1024th Real Variable In Package

Test Execution Bar Similar
Name Time Chart Groups
-—— — —— - ———— e ————————————

ss785 1.55 AARIRKRARN AN RARKANUNKANRCRN IR AR |

88779 1.56 HAXEERNRRRAKNAARK AN UARRRINKXR AT RRR |

58780 1.56 FERANRKRARERARARAREURERNNSANRR RN |

35781 1.56 L33 8222283222232 2222222222222 2222 4 l

ss782 1.56 HEANRKIK KRR TANINENARA RIS kRN R AR

55783 1_56 2224823232222 2222222223 32232222228 !

35784 1'56 1182302222222 228X22222 X222 2223 F] ]

58786 1.56 12222 2 e s 2222122222222 |

88787 1.56 KARMEKKARAN R I AR IR RN IINTERREIANSE |

33788 1.56 L2222 2323222222222 222222 22233222823 !

-- Early variables may be able to use short displacements.
58779 xx := x0 ; r0 := yy ;
-~ Reference the 0th real variable declared in a package.

35780 xx = r2 ; r2 = yy ;
-~ Reference the 2ed real variable declared in a package.
ss781 xx := r8 ; r8 := yy :;
-~ Reference the 8th real variable declared in a package.
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38782 xx = rlé ; rlé := yy ;
-- Reference the 16th real variable declared in a package.
538783 xx := r32 ; r32 = yy :
-- Reference the 32th real variable declared in a package.
55784 xx := r64 ; ré4 := yy ;
~- Reference the 64th real variable declared in a package.
88785 xx := rl28 ; rl28 := yy :
-- Reference the 128th real variable declared in a package.
ss786 xx := r256 ; r256 = yy ;
-- Reference the 256th real variable declared in a package.
58787 xx := rS512 ; r512 := yy :
-- Reference the 512th real variable declared in a package.
55788 xx = rl024 ; rl024 := yy ;
-- Reference the 1024th real variable declared in a package.

References

* none
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2.5 Enumeration Types

Question: How does the performance of operations on objects of an enumeration type compare with
the performance of an equivalent representation using strings or numeric values?

Summary: When integer values are used as an alternative to literals of an enumeration type, there is
no performance difference, For a simple assignment of a literal value, the integer assignment is slower
by about 16%. (In the benchmark suites considered in this document, there are no tests that use
character or string values as an alternative.) When an enumeration representation clause is used to
specify the internal codes of the literals of an enumeration type, the pcrformance of the VAL, POS, and
SUCC attributes degrades by almost an order of magnitude.

Discussion: Enumeration types provide users with a versatile way of expanding the set of types that
characterize their applications. They allow users to define new discrete data types that go beyond Ada’s
basic predefined discrete types. An issue that arises naturally when new data types are used is whether
or not the performance of operations on these types is better or worse than the performance of an equiv-
alent representation using the basic discrete types.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compller: Verdix Ada Developmant System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: ACEC tests of assignment to an enumerated type.

in this observation, and in all that follow, the results presented are for ACEC tests; there are no equiv-
alent tests in the AES or PIWG suites.

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Report “Range Constraint Check.”

> > > " " " = o 4 9 o . e T =k e e i e e o v SO0 B ™ 9 S Y e e o o0

Optimizations
Range Constraint Check
Test Execulion Bar Similar
Name Time Chart Groups
55128 2.51 Wk kA W s ok ok ok o b sk ok sk Ok Wk b ok o b e R ok o S R f
53255 2.51 KA RE KT XA R AN IRRKA AR A NI X T TR AR RNN N ]
55129 2'58 RN ANE KRR AN TR R AR N ARk Ak x kR I
CMU/SEI-92-TR-32 43




TYPE color IS ( white, red, yellow, green, blue, brown, black ) ;
hue : cclor := yellow ;

ss128 I hue < black THEN hue := color’succ { hue ) ; END IF ;
IF hue > white THEN hue := color’pred ( hue ) ; END IF ;
~- uses ’'SUCC and ‘PRED on enumerated type, no checking
55129 IF ei < 6 THEN ei := ei 4+ 1 ; END IF ;
IF ei > 0 THEN ei := el - 1 ; END IF ;
-- Same computations as in 35128 on integers .
55255 IF hue < black THEN hue := color’succ { hue ) ; END IF ;
IF hue > white THEN hue := color’pred ( hue ) ; END IF ;
-- uses ’*SUCC and 'PRED on enumerated type, enabling range checking

s o o o > i o S T A o o O A e B G o e e e

Observation 2: Assignments to array elements of enumeration types. The tests of interest are ss53
and ss309.

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Report “Arrays - Assignment to 1 Dimensional Array of Real.”

- - - - - - o it o e o e o T

Language Feature Overhead

- - - - -———— ——— - -

Test Execution Bar Similar
Name Time Chart Groups
ss55 0.78 *kaw |

$s169 0.78 rERKN |

s8645 1.28 ek wok |

8853 1.28 EREH KKK |

55309 1.28 KhAAARN {

8854 1.42 EERRIN LR {
88646 3,95 ARNRRKRF AR AXNRR RN K |
58647 §.26 HEERANN U SN NRRARNNTRENNRRRN R IR AR R NN |

- - - - - - -— o e B o e

Individual Test Descriptions

8553 ii 1= i1 (ei ) :
-- Reference to subscripted array of int, without checking.

s e o e g e S . O B i e e e B e S e o A s e o e

ss54 i 3= 41 (ei + 1) ;
-- Reference to subscripted array of int, without checking.

8555 ii == 41 (1) ;
-- Reference array with a constant subscript, without checking.

s 2 ks W P e e . o A S e o = = e > = o

85169 ii := i1 (1) ;
-~ fetch from 1D array with range checking, using constant subscript

85173 ii := 11 ( ei + 1) ;
-~ Reference to subscripted array of int, with checking.

44
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55309 hue := stat ( ei ) ;
-- access array of an enumerated type

e e o e o o o e T ot o P T e o A T O o Y o

55645 one := el (el ) ;
~- fetch from 1D array, checking suppressed

33646 one := e2 (ei , ej ) ;
-~ fetch from 2D array, checking suppressed

o k2 i e 0 v o T 9 e e e o T 2 ok e 4 o o o

838647 one := e3 {ei , e} , ek } ;
-- fetch from 3D array, checking suppressed

Observation 3: Assignment of a literal value to an enumeration type.

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Report “Assign Enumeration Literal.”

S o . s e e s T e U P S e o T e " - > = —

e = Y e o Y o i o > v e o e i S S . oy 4 T e T = S e = " "

Test Execution Bar Similar
Name Time Chart Groups
558310 0.66 LR L T T T T R R R T i

837 0.17 L R R R 2 Al

2 T o D i i D g s S A A A o R T . e " e - D o e e A W e

s37 kk =1 ;
-=— Integer literal assignment, literal "1™ to library scope variable.

88310 hue := yellow ;
-~ assign enumeration literal to variable of type

Observation 4: The results below show the effects of forcing a particular implementation of the
enumeration type by using an enumeration representation clause.

ACEC Test Results:
Contiguration 1, ACEC Release 2.0, SSA Report “Attributes on Enumeration Types.”

Test Execution Bar Similar
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Name Time Chart Groups
$5252 3.51 T i

83251 5.53 EEERN

ss254 33.20 RN R R AR A R ANARANT AT T NN NS f
88253 34.60 R R XA A AR T AR AT R REEARN TR R R A NSO RN NN

Individual Test Descriptions

- - 1 o e s A e - " o - - e

55253 and 85254 use a representation clause, ss25i and ss252 do not.

TYPE mxl IS ( add, sub, mul, lda, sta, stz ) ; -~ from LRM (3.3
a : mxl ;

d : int := mxl'pos ( lda ) - mxl’pos ( mul ) ;

85251 a := mxl’val { mxl’pos ( mxl’succ ( a}) ) *ei - d} ;

-~ use VAL, POS, SUCC attributes on enumeration type without

-~ representation clauses. This statement enables range checking.
85252 a = mxl‘val ( mxl'pos ( mxl’succ ( a ) ) * ei -d ) ;

-~ use VAL, POS, SUCC attributes on enumeration type without

-~ representation clauses in a block with suppress RANGE CHECK.

TYPE mx2 IS ( add, sub, mul, lda, sta, stz } ; - from LRM 13.3
FOR mx2 USE { 1, 2, 3, 8, 24, 33 ) ;
a : mx2 ;

d : int := mx2'pos {( lda ) - mx2‘pos ( mul } ;

55253 a = mx2'val ( mx2’'’vos ( mx2'succ (a ) ) *ei - d) ;
-- use VAL, POS, SUCC attributes on epumeration type with
~- representation clause and enable range checking

83254 a := mx2'val ( mx2'pos { mx2'succ (a )} *ef -d) ;
-- use VAL, PQOS, SUCC attributes on enumeration type with
-- representation clauses, suppressing range_checking

e s 0 e B 40 o o T T s A Ty A P A Y T o " o o " T 4 i o o e b e .~ —

References

® none
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2.6 Exceptions

Question: What are the performance consequences of providing exception handling capabilities?

Summary: The presence of an exception handler that is not invoked does not add to the execution
time of a program. Raising and handling an exception locally takes approximately 68 to 71
microseconds. Propagating an exception through two to four levels of nesting takes from 124
microseconds to 292 microseconds, i.e., an increase in execution time ranging from 77 percent to 317
percent,

Discusslon: Section 14.5.4 of the Rationale for the Design of the Ada Programming Language states
that, “"One important design consideration for the exception handiling facility is that exceptions should
add to execution time only if they are raised.” The benchmark results presented in the Observation sec-
tions that follow support this assertion for the configuration tested. Note that, aithough the tests facilitate
comparisons between the various exception-handling schemes, they do not provide any comparison
between exception-handling and alternatives to exception-handling such as the use of status flags or
return variables.

There are some inconsistencies in the resuits presented here. The ACEC and PIWG tests to raise and
handle an exception locally yield the same result (about 70 microseconds), but the corresponding AES
test yields a result more than twice as large (170 microseconds). The ACEC result for exception han-
dling during rendezvous (306 microseconds) is about 38% larger than the PIWG result (221 microsec-
onds).

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CFuU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVMES945 VMEbus chassis.

Compilier: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: ACEC and PIWG tests that raise and handle locally a usar-defined exception.

ACEC Test Resylts:
Configuration 1, ACEC Release 2.0, SSA Report “User-Defined Exceptions” and “Exceptions—Condi-
tional Raise.”

In this group of results, subtracting the results for tests ss311 and ss312 yields 71 microseconds, ap-
proximately, for the time required to raise the exception and enter the handler. A similar calculation for
ss312 and ss313 shows that the presence of a handler that is not entered adds only 0.26 microseconds
of overhead.
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Runtime System Behavior

User~defined Exception

Test Execution Bar Similar

Name Time Chart Groups

ss313 0.52 !

ss312 0.78

ss311 71.30 AR RN AR AT AR AT RN AR RN AR NN {
Individual Test Descriptions

Demonstrate overhead of raising user-defined exceptions.

55311 DECLARE
except : EXCEPTION ;

BEGIN
IF 11 > 0O
THEN
RAISE except ;
END IF ; -- True, raised
EXCEPTION
WHEN except => procO ;
END ;
~- explicit raise of user-defined exception, and process it

$3312 DECLARE
except : EXCEPTION ;

BEGIN
IF 11 < 0
THEN
RAISE except ;
END IF ; -~ False, not raised
EXCEPTION
WHEN except => procO ;
END ;
~- define user-defined exception, do not raise it
ss313 DECLARE
BEGIN
IF 11 < 0
THEN
RAISE Numeric_error ;
END IF ; -~ False, not raised
END ;
-~ does not define an exception or raise one

This second group of ACEC tests also shows that raising an exception and entering the handler takes
approximately 71 microseconds.

Test Execution Bar Similar
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Name Time Chart Groups
85521 5.73 wh K
35528 76.60 (2232222222222 222022022t RiRs ]

-
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55527 DECLARE

ex : EXCEPTION ;
BEGIN

procl ;

IF mm = 11 -- never taken

THEN

RAISE ex ;

END IF ;

procD;
EXCEPTION

WHEN ex => procO;
END ;

-~ conditional raise of user defined exception and go through handler.

-- Not taken. Compare with ss528, where exception is raised.

e e - 8 - e 0 4D - B o 0 S P e e T et n e L W

ss528 DECLARE
ex : EXCEPTION ;
BEGIN
procl ;
IF mm /= 11 -- always taken
THEN
RAISE ex ;
END IF ;
procl;
EXCEPTION
WHEN ex => proc0;
END ;
-=- conditional raise user defined exception and go through
== handler. Taken. Contrast with s8s527 where it is not.
-~ Explicit RAISE could be implemented by simple branch.

— - - - - - -

PIWG Test Results:

Configuration 1, PIWG 12/12/87 Release, Test E000001.

Test Name: E000001 Class Name: Exception
CPU Time: 68.4 microseconds
Wall Time: 68.5 micruseconds. Iteration Count: 256

Test Description:
Time to raise and handle an exception
Exception defined locally and handled locally

Observation 2: ACEC and PIWG tests that raise an exception in a called procedure and handie it in

the calling unit.

ACEC Test Resulls:

Configuration 1, ACEC Release 2.0, SSA Report “Exceptions - Block With Handler.”

Subtracting the ss384 resutt from the ss381 results yields a value of, approximately, 117 microseconds.
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Test Execution Bar Similar
Name Time Chart Groups
ss384 6.46 *x I
ss381 123.90 AT AR AN AR R RA AR RN R AR AR AR RN AR AR TS t

- - T s 4 o e T A T o W S A W O o 4 o A O N kW e e R T e
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ss381 DECLARE
BEGIN
XX = one ;
f;
EXCEPTION
WHEN excp => NULL ;
WHEN OTHERS => die ;
END ;
~- Block with exception handler which calls on a procedure
-- which raises the exception (the procedure it calls
~- on does not have a handler but simply raises the exception.)
55384 DECLARE
BEGIN
xXx = one ;
£
EXCEPTION
WHEN excp => NULL ;
WHEN OTHERS => die ;
END;
~- call on procedure which doesn’t propagate exception

- - - - - o s o e o i o o A A 2 o

PIWG Test Resylts:

Contfiguration 1, PIWG 12/12/87 Release, Test £000002.

The 7% increase in this result over the equivalent ACEC result just listed is not significant. According to
the comments in this test, the difference between the PIWG result shown here and the PIWG E000001
result shown in the previous observation is equal to the pure propagation overhead. Performing the sub-
traction yields a value of, approximately, 56 microseconds. This is consistent with the result of a simitar
AES test shown in Observation 4.

Test Name: EQ00002 Class Name: Exception
CPYU Time: 124.7 microseconds
Wall Time: 124.7 microseconds. Iteration Count: 128

Test Description:
Exception raise and handle timing measurement
when exception is in a procedure in a package

50
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Observation 3: ACEC and PIWG tests of exception propagation.

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Report “Exception Processing with/without Handlers.”

The results below show the overhead of propagating an exception through various numbers of levels
for eventual handling. This set of tests confirms the increasing performance penalty for propagating an
exception through increasingly nested units.

As before the results are obtained by subtraction of the results from pairs of tests. The result for ss381
minus ss384 has already been covered in Observation 2. Subtracting the ss383 resuft from that of
$s380 yields a time of approximately 161 microseconds. A similar calculation for ss382 and ss379 yields
227 microseconds, approximately. These latter two tests are not directly comparabie with the PIWG test
results shown in this observation because of the different numbers of levels through which the excep-
tions are propagated.

- > > > T Sy > o e o P e " Y o -

Test Execution Bar Similar
Name Time Chart Groups
ss384 6.46 * |

55383 13.60 bl |

ss382 14.40 v |

s35381 123.90 (2222222222223 222 i
88380 174.40 2 S22 222222222t 22 ald] i
55379 241.10 132222 2222222228220 22222 2 sdadd ] |

PROCEDURE hl IS
BEGIN
gl ;
EXCEPTION
WHEN excp => NULL ;
WHEN OTHERS => die ;
END hl ;
ss379 hl ; -~ does propagate EXCEPTION
-- make two PROCEDURE calls, The lowest level has an EXCEPTION handler
-- which can (re) raise an EXCEPTION and propagate it to the next
-- higher level. this problem raises the EXCEPTION.
ss382 hl ; -- EXCEPTION not propagated
-- make two PROCEDURE calls. The lowest level has an EXCEPTION handler
«- which can (re) raise an EXCEPTION and propagate it to the next
-- higher level. this problem does NOT raise the EXCEPTION.
PROCEDURE h2 IS
BEGIN
g2 :
EXCEPTION
WHEN excp => NULL ;
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WHEN OTHERS => die ;
END h2 ;
ss380 h2 ; -- raises EXCEPTION
-- make two PROCEDURE calls. The lowest level does not have an
~- EXCEPTION handler and will simply propagate the EXCEPTION raised
-- to the next higher level. this problem raises the EXCEPTION.
ss383 h2 ; ~- EXCEPTION not raised
~- make two PROCEDURE calls. The lowest level does not have an
-- EXCEPTION handler and will simply propagate the EXCEPTION raised to
-- the next higher level, this problem does not raise the EXCEPTION.
PROCEDURE f IS
BEGIN
procl ;
IF ii > 0
THEN
RAISE excp ;
END IF ;
END f ;
55381 DECLARE
BEGIN
XX = one ;
£
EXCEPTION
WHEN excp => NULL ;
WHEN OTHERS => die ;
END ;
-~ Block with exception handler wh'!ch calls on a procedure which
-- raises the exception (the procedure it calls on does not have
== a handler but simply raises the exception.)
58384 -- the same as ss381, except that the exception is not raised
-- call on procedure which doesn’t propagate exception

- - - - D - e o

PIWG Test Results:

Configuration 1, PIWG 12/12/87 Release, Tests E000003 and E000004.

Test Name: EQ000Q3 Class Name: Exception
CPU Time: 235.5 microseconds
Wall Time: 235.5 microseconds. Iteration Count: 64

Test Description:
Exception ralse and handle timing measurement
when exception is raised nested 3 deep in procedure calls

Test Name: EO00004 Class Name: Exception
CPU Time: 291.9 microseconds
Wall Time: 292.0 microseconds. Iteration Count: 64

Test Description:
Exception raise and handle timing measurement
when exception is nested 4 deep in procedures
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Observation 4: ACEC and PIWG tests of exception-raising during task rendezvous.

The rules of Ada state that when an exception is raised within an accept statement (and not handled in
an inner frame,) the same exception is raised again in the called task, immediately after the accept
statement, and is also propagated to the calling task.

ACEC Test Results:
Configuration 1, ACEC Release 2.0, Raw Output.

There is no set of SSA tests for this form of exception, but two tasking tests from the main ACEC suite,
task37a and task37b, show ‘hat the overhead is (subtracting the task37b result from that of task37a),
approximately, 306 microseconds.

outer loop count

inner loop count |
| |

name size min mean | { sigma
null loop_time 0 1.8086E+00 0.1%
task3iZa

-- Raises a user-defined exceuption inside a rendezvous.
-~ The exception will be propagated to task performing ENTRY call.
-- cf. task37b
48 2050.1 2055.0 4 3 0.2%
task37b
-- This test problem was constructed for comparison with TASK37A
-- Unlike TASK37A, this test problem rendezvous and terminates the
-~ task without raising and propagating an exception.
~- Difference between TASK37B and TASK37A is the incremental time
-- to raise and propagate an exception from within a rendezvous.
48 1744.0 1744.0 4 3 0.0%

PIWG Test Results:
Configuration 1, PIWG 12/12/87 Release, Test E000006.

There is a considerable discrepancy between the ACEC result (306 microseconds) and the PIWG result
(221 microseconds). There is no AES test to measure the overhead of an exception occurring during a
rendezvous.

Test Name: EQO0005 Class Mame: Exception
CPU Time: 221.3 microseconds
Wall Time: 220.9 microsecoends. Iteration Count: 32

Test Description:

Exception raise and handle timing measurement

when exception is in a rendezvous

Roth the task and the caller must handle the exception

Observation 5: AES exception handling tests.

AES Test Results:
Configuration 1, DIY_AES Version 2.0, Test TI12.
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The AES exception-handling test combines a number of tests in a single program. in the final test, a
recursive scheme is used o measure the time to raise and handle an exception that is propagated
through several levels. From these multi-level measurements, the average time to propagate an excep-
tion through just one level is obtained. By comparing the 5-level and 10-level averages shown, it is pos-
sible to determine if the single-level propagation time is invariant or is dependent upon the number of
levels. The 56-microsecond result for this test is consistent with the PIWG result obtained by subtracting
the PIWG E000001 and E000002 results, as discussed in Observation 2. However, the 170-microsec-
ond time to raise and handle an exception locally is more than twice the ACEC and PIWG results for
the same test.

There is no AES test to measure the overhead of an exception occurring during a rendezvous.

I. Group I - runtime Efficiency Tests

I.27. TI12

This test examines the runtime efficiency of exception
handling.

The cpu time taken to raise an exception using a RAISE
statement, and handle it in the same block is 170us.

The additional cpu entry and exit overhead for a
subprogram with an exception handler is Os.

The stack space overhead of calling a procedure
containing an exception handler, compared with calling a
procedure without an exception handler is [¢]
STORAGE_UNITs.

o ——— tmm— e ———— Fmmmmm— e — +
| No. of | Nesting [ Cpu time for |
| Levels | Depth | Propagation |
N towem e m—— trmmmm———————— +
| 5 | 7 55, 6us [
i in0 [ 12 { 55.8us {
Frmme——— o ———— Frmm e —————————— +
References
[lchbiah] Ichbiah, Barnes, Firth, Woodger. Rationale for the Design of the Ada Program-
ming Language. United States Government, 1986.
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2.7 Generic Units

Question: What is the comparative performance of generic and non-generic units?

Summary: Efficiency of generic units is comparable to non-generic units. For the cases tested for this
repont, a conservative assumption is that a generic unit will increase execution time by 5%. In many
cases the generic unit's performance was equal to or exceeded the comparable non-generic version.
Code sharing did not occur.

Discusslon: Generic program units allow a single, general version of software to be used for different
data types by the process of instantiation. Generic units offer several possible advantages. An algorithm
can be implemented once and instantiated for different data types, simplifying program construction and
maintenance. in some cases, code sharing may reduce the storage requirements for executing code by
reducing the number of separate units. However, reduced execution speed is often assumed for gener-
ics of all kinds, which argues agzinst their use.

Comparison of matched generic and non-generic procedures indicate that the generic routines are gen-
erally somewhat slower than their custom-coded counterparts (Observation 2 on page 56, Observation
3 on page 58; and Observation 4 on page 59). Generic versions execution speed ranged from -35% to
+6% of the equivalent non-generic routines. The lower execution time noted for generics in Observation
2 is in comparison to “hand-coded" equivalents, and probably represents inefficient hand coding rather
than true improvement due to the use of generics. The effects of generic instantiation vary depending
on the application code however, so these numbers are, at best, representative.

it multiple instantiations of generic routines can share an executable image, storage is conserved com-
pared to multiple hand-coded routines. Tests demonstrate that code sharing is not performed by the
tested VADS compiler version (Observation 1 on page 55).

The effect of inlining generic routines (Observation 4 on page 59) is ambiguous. For the small number
of tested cases, conflicting results are noted. The effects are small however, so inlining is not consid-
ered harmiul, although beneficial effects have not been conclusively demonstrated.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiller: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: The AES test TO09 checks explicitly for code sharing. No code sharing was observed
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for any of the test scenarios.

(See also the AES tests TI09A-G, which show no code sharing. T109 output is below in Observation 2
on page 56.)

AES Test Results:
Contiguration 1, DIY_AES Version 2.0, Test TO09.

O. Group O - Optimisation Tests
0.9. TOO09

This test <c¢hecks on the sharing of code by generic
bodies.

Simple generic procedures tak -3 discrete input and
output parameters which are .nstantiated in the same
compilation unit do not share code.

Simple parameterless generic packages which are
instantiated in the same compilation unit do not share
code.

Simple generic packages taking a discrete parameter which
are instantiated in the same compilation unit de not
share code.

Simple parameterless generic packages which are declared
as individual compilation units do not share code.

Generic packages taking a number of generic parameters
which are declared as individual compilation units do not
share code.

Cbservation 2: AES tesis TIO9A-G compare the performance of generic routines and hand-coded
equivalents. Performance of the generic routines varied from 4.5% slower to 35.3% taster. The reported
increase of 35% for TGO9F, while impressive, may be an artifact of a low performance hand-coded
version.

AES Test Results:
Configuration 1, DIY_AES Version 2.0, Tests TI09A-G.

I. Group I - Runtime Efficiency Tests

I.18. TIO09A

This test assesses the relative efficiency of passing and
using an enumeration type as a generic parameter against
its non-generic equivalent. The test alsc measures the
cpu time taken to perform the generic package. The test
determines whether or not instantiations of the same
generic package are able to share the code of their

bodies.
Pacrage instantiation : 23.7us
Package execution : 1.18ms

Execution of handed-coded : 1.09ms
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I.19.

1.20.

I.21.

1.22.

equivalent

Separate instantiations of the package do not share code.

TIO9B

This test assesses the relative efficiency of passing and
using an array type as a generic parameter against its
non-generic equivalent., The test also measures the cpu
time taken to perform the generic package. The test
determines whether or not instantiations of the same
generic package are able to share the code of their
bodies,

Package instantiation : 23.3us

Package execution : 299ms

Execution of handed-coded : 313ms
equivalent

Separate instantiations of the package do not share code.

TI09C

This test assesses the relative efficiency of passing and
using a fixed point type as a generic parameter against
its non-generic egquivalent. The test also measures the
cpu time taken to perform the generic package. The test
determines whether or not instantiations of the same
generic package are able to share the code of their
bodies.

Test failed. !STORAGE_ERROR

TI09D

This test assesses the relative efficlency of passing and
using a floating point type as a generic parameter
against its non~generic equiialent. The test also
measures the cpu time taken to perform the generic
package. The test determines whether or not
instantiaticns of the same generic package are able to
share the code of their bodies.

Test failed. !STORAGE_ERROR

TIO9E

This test assesses the relative efficiency of passing and
using a record type as a generic parameter against its
non-generic equivalent. The test also measures the cpu
time taken to perform the generic package. The test
determines whether or not instantiations of the same
generic package are able to share the code of their
bodies.

Package instantiation : 1.01ms

Package execution : 3.10ms

Execution of handed-coded : 3.09ms
equivalent
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Separate instantiations of the package do not share code.

I.23. TI09F

This test ascesses the relative efficiency of passing and
using a discriminated record type as a generic parameter
against its non~generic equivalent. The test also
measures the cpu time taken to perform the generic
package. The test determines whether or not
instantiatjons of the same generic package are able to
share the code of their bodies.

Package instantiation : 2.63ms
Package execution : 3.33ms
Execution of handed-coded : 5.07ms

equivalent

Separate instantiations of the package do not share code.

1.24. TIO9

This test assesses the relative efficiency of passing and
using a function as a generic parameter against its
non~-generic equivalent. The test also measures the c¢pu
time taken to perform the generic package. The test
determines whether or not instantiations of the same
generic package are abie Lo share the code of their
bodies.

Package instantiation : 1.76ms
Package execution : 2.58ms
Execution of handed~coded : 2.57ms

equivalent

Separate instantiations of the package do not share code.

Observation 3: AES use of the GAMM standard shows the performance of a generic instantiation to
be identical to that of the non-generic version (TJ01 vs. TJ07).

Configuration 1, DIY_AES Version 2.0, Tests TJ01 and TJ07.
v. Group J ~ NPL Test Suite
J.l. TJI01
This benchmark test determines the cpu time taken to
perform a set of standard scientific calculations. This
is known as the GAMM standard.

The GAMM standard is 4.95us.

J.7. 0 T307

This benchmark test measures the change in the GAMM
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standard caused by using generic instantiations.
There was a 0% increase in the GAMM standard.

Note that the results of this test may be imprecise as
extraneous influences were present.

Observation 4: The two ACEC SSA reports titied “Generic Function Calls - Inline vs. Non-Inline”
examine the behavior of a simple maximum function which is implemented in generic and reguiar forms,
subjected to inlining and placed at several locations (local, same unit, and externat unit). In one test
group, the test makes a single call to the function. in the second, two calls are made, with the return
value of the first call used as a parameter for the second.

The simple function call (one call, no nesting) shows that generic performance ranges from equivalent
to the non-generic forms to somewhat worse. When two calls are nested, the non-generic forms (55632
and ss143) shovs the best performance while generic execution time increases from 4 1o 6%.

Inlining combined with generics shows mixed results.
ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Reports “Language Feature Overhead”

“Generic Function Calls - Inline Vs. Non-inline” {tests ss141, ss142, 5621, §s622, $5623,
§5624, ss625 and 22626)

“Generic Function Calls - Inline Vs. Non-inline” [tests 5143, s5628, 5629, 5630, 5631,
§8632 and ss633]

Note that test ss633 simpiifies the function call, and should be ignored in making comparisons. This
SSA test is marked with the phrase 5¥ignore.

- - - -

- o 0 e e o i A ot e S i
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Generic Function Calls - Inline Vs Non-inline

e oy o e e A o Y S B . o S 2 o S 7 = = e =

Test Execution Bar Similar

Name Time Chart Groups

ss142 8.19 AHEERRNR KRR TR REK KRk Fhk

53625 8_19 LA 2882222222322 22222 4 ‘

53141 11'10 ERAETREKNTTR A NK I T T h Wk de e o I

55621 11.10 (2228222222222 L L 2RY |

55622 11.10 LA RIS e 2 SRS 2222 222

53626 11_30 (2222222222222 23 222222222 L 222 I

53624 11_60 (AR RS SR RSS2 22222 S 1

$3623 11.80 Hh KRR AT RHANAREAAARANK AR AKX )
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Individual Test Descriptions

FUNCTION maxl ( x , y : real ) RETURN real IS
BEGIN

IF x >= y THEN RETURN x ;

ELSE RETURN y ;

END IF ;
END maxl ;
88141 xx := maxl ( yy , 22 ) ;

~= call on local function

s5142 xx := max2 { yy . zz ) ; =-- max2 is inline of maxl

-~ call on local inline furction
55621 xxX := max3 {( yy , 2z } :

-- generic non~inline function, instantiated in external unit
58622 xx := max4d {( yy , zz ) ;

-~ generic inline function, instantiated in external unit

$s8623 xx := max5 {( yy , zz } ;

-~ generic non~inline frnction, inatantiated in same unic
55624 xx := max6 { yy ., 2z ) ;

-~ generic inline function, instantiated in same unit
$5625 xx := max?7 { yy , zz } ;

-~ local generic inline function,
55626 xx := max8 ( yy , zz )} ;

-- local generic non-inline function,

Generic Function Calls - Inline Vs Non-inline

Test Execution Bar Similar
Name Time Chart Groups
55633 11.10 KN RN R RT R AW selgnore
55632 19.80 AR RS ESR ARl R 222 2R R 1

55143 20.40 (2222428222222 2 22222222 X3 |

33629 20.60 L EA AR RS caRERsSRRREX AR 2R X2 1
55630 20-60 AR AT R R AT AR RN AN NI RARCS T l
55631 20.80 AR R4Sl TSRS SNE ] ‘
55628 21'00 I 2R RSS2 S22 aR222 232222 X2 ‘

FUNCTION maxl ( x , y : real ) RETURN real IS
BEGIN
IF x >= y THEN RETURN x ;
ELSE RETURN y ;

END IF ;
END maxl
$8143 xx := maxl ( 1.0 , maxl ( yy , zz ) ) :

-- local function where actual parameter contains another

55628 xx = max3 { 1.0, max3 (yy , zz )} ) :
-~ generic non~-inline function, instantiated in external unit
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55629 xx := max4 { 1.0 , max4 {( yy , 2zz ) } ;

~- generic inline function, instantiated in external unit
$8630 xx :=max3 ( 1.0 , maxS { yy , zz } } :

-~ generic non-inline function, instantiated in same unit
55631 xx := max6é { 1.0 , max6 { yy , 2z )} ) ;

-- generic inline function, instantiated in same unit
$8632 xx = max ( 1.0 , max ( yy , zz ) ) :

-- language feature test comparison, non-generic non-inline function,
ss633 xx = max9 (yy , zz ) ;

-- language feature test comparison, inline in external package

L e k2 i s s = - a4 o o S e e e " e e v o o e

References

® none
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2.8 Inlining of Procedures

Question: What is the effect of inlining procedures and generic procedures?

Summary: Execution time is generally reduced by inlining, although the gain in performance varies.
Inlining requests are honored by the compiler, but not in all cases. Program size changes due to inlining
were not measured.

Discussion: Ada’s pragma INLINE allows procedures to be inserted in the calling program at the point
of the call, avoiding the overhead of transferring control. However, the performance gain must be bal-
anced against the increased program size when multiple copies of routines are created.

An Ada compiler is not required to perform inlining. Likewise, inlining may be performed automatically.
AES test TO0S examines conditions under which inlining is effective (Observation 1 on page 63). The
AES test indicates that inlining is only performed on request, but also that the request is not always hon-
ored.

Both the AES and ACEC results indicate that pragma INLINE is eftective in reducing execution time for
ordinary (non-generic) procedures (Observation 2 on page 64 and Observation 3 on page 66). The ev-
idence for generic procedures is less persuasive (Observation 4 on page 67), but it appears that inlining
generic procedures is somewhat effective. The tests show a fair amount of variation in improved exe-
cution time. This is an expected result, since the time saved refiects the compiexity of the call, affected
by such factors as the number, type, and ordering of arguments and method used for passing argu-
ments, not the complexity of the procedure body.

The size effects of pragma INLINE was not measured. Conceptually, the size expansion should be di-
rectly related to the amount of code the compiler produces for the body of the procedure.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 25€-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVMES45 VMEbus chassis.

Complier: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: AES test TO05 found that pragma INLINE is honored on demand for “simple
procedures,” but not for subprograms “which are difficuit to inline.” Inlining was not perdormed
automatically for subprograms which did not contain pragma INLINE.
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AES Test Results:
Configuration 1, DIY_AES Version 2.0, Test TO05.

0.5. TO0S
This test examines subprogram inlining.

The test determines whether pragma INLINE works under
various conditions and alsco whether subprograms are
automatically inlined (regardless of whether the prayma
is set). 1In the followin 4 "simple” procedure is one
which has several lines of c¢ode in the body but no
exception handlers/blocks etc. and only one or two scalar
parameters.

Inlining 1s performed for simple procedures declared in
the same compilation unit.

Inlining is performed for simple procedures declared in a
WITHed package.

Inlining is not performed for simple procedures declared
in a WITHed package, when pragma IN. ~ is NOT set.

Inlining is not performed for routines which are
difficult to inline (e.g. one with complex parameters and
exception handlers etc.), though not unreasonably
difficult.

Inlining is performed for routines which pass on their
{(simple) parameters to another routine, with the additioen
of extra parameters.

Observation 2: AES test T110, configuration 1, shows that performance improvements from the use of
pragma Inline are measurable when compared with subprograms that are not inlined.

Results for integer parameters appear reasonable. The remaining tests record execution times of zero
seconds for the inlined routines, which invalidate the comparison to the non-inlined routines. Analysis
of the test source code shows that the calling times are measured for paired procedures. The inlined
version of the pairs lacks anti-optimization code present in the non-inlined version that accesses the
procedure’s argument. Although this anti-optimization code is protected from actual execution during
testing, omitting this code allows the compiler to remove all the test code.

AES Test Results:
Configuration 1, DIY_AES Version 2.0, Test Ti10.

Note that most of the inlining tests were removed by optimization (see above). These observations
are marked with the phrase 5 {nlining results invalid for the following table.
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I.25. TI10

This test examines the runtime efficiency of subprogram
calls, 1in particular, the passing of scalar and
non~scalar parameters using the "in%®, "in out"™, “out"™ and
“return™ modes., The test also determines whether the
parameters are passed by copy or by reference. The
overheads of subprogram entry and exit are included in
the measured costs. The test is performed for INLINEd and
non-INLINEd subprograms.

Test TO0S indicates that inlining is performed for some

simple procedures but not for some procedures which are
fairly difficult to inline.

Integer parameters:

Fom e ———— o ——————— o fumm - ——— tommm e +
{ Mode | Passing | Cpu | Passing | Cpu !
i | Mechanism | Time | Mechanism | Time {
i | | ! {INLINEd) | (INLINEd) |
e ———— dom i ————— o —————— trmmmcmm————— o ——— +
| in | COPY { 7.82us | COPY j 246ns |
{ in out | COPY { 5.90us | coPY i 510ns |
| aut | CoPY { 5.57us | COoPY | 253ns |
| return | - i 6.04us | - | -

Fmm e —————— - e ————— tommm———————— o —————— +

Unconstrained array parameters (array of 256 integers):

5¥Inlining resuits invalid for the following table

fommmm e fommmm————— b ———— temmcam——— pmmmm—— e —— +

|  Mode | Passing | Cpu | Passing | Cpu |

i | Mechanism | Time | Mechanism | Time |

] | | | (INLINEd} | (INLINEd) |

o ——— e ——— R o R +

| in | REF | 7.6%us | REF ] 0=

| in out | REF | 7.6%us | REF | Os

| out |} REF | 8.6lus | REF i Os

| return | - i 22%us | - ! -

B T e —————— o —— trmrr v e———— e 2 e e +

Constrained array parameters (array of 256 integers):
5¥Inlining results Invalid for the following table

e ———— e —————— [ — brmmmn——————— b ———————— +

|  Mode | Passing | Cpu | Passing | Cpu {

| } Mechanism | Time | Mechanism | Time {

| f i f (INLINEd) [ (INLINEd) |

b ————— o ———— Forr——————— o —————— o ——————— +

| in REF I 7.23us | REF I O0s |

I in out | REF ] 6.99us | REF ! Os

| out | REF ] 6.7%us | REF ¢ Cs ]

| return | - | 22%us | - I -

prmrm—————— o ———— - —————— frmmmmm e ——— $omm e ———— +

Simple record parameters {record of 256 components):
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=" |nlining results Invalid for the following table
o ———— o ——— b ————— Fmm . —————— e ————— +
| Mode | Passing | Cpu | Passing | Cpu [
| | Mechanism | Time | Mechanism | Time ]
l } ] | {INLINEd) { (INLINEd) |
o ———— b ———— o —————— G —————— fomamm————— +
! in | REF I 7.37us | REF | Os |
| in out | REF { 6.86us | REF { 0s |
i out | REF | 6.79%s | REF } Os
| return | - i 233us | - i -
bmmm————— pom e —— o ——— e ———— g —————— +
Discriminated record parameters {record of 256
components):

=¥ nlining resuits invalid for the following table
fmm——— fomm———————— Frmm - Ao ————— dmmme - +
| Mode | Passing | Cpu | Passing | Cpu {
{ i Mechanism | Time | Mechanism | Time i
i ] | ! (INLINEd) | (INLINEd) |
tmm————— + + b —————— fmmm e ———— +
} in | REF | &.86us | REF ! 0s |
| in out | REF { 6.84us | REF i 0os |
] out | REF | 6.84us | REF | 0s |
| return | - ] 234us | - | - ]
bmm—————— prmm——————— P ————— pmm— e pmmm——————— +

Observation 3: ACEC Single System Analysis (SSA) report “Function Calls (Inline)” compares several
variations of a procedure. Simple comparison of ss141(procedure) and ss142 (inlined procedure)
shows that inlining is effective (a 26% decrease in execution time).

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Report “Language Feature Overhead™ - “Function Calls (In-
ling).”

o = o A S 3= ot e T e s - e Y Yepy

- - > #5248 s Y T 2 W S e sl e e A o ¥ e W

st i i e A e T e A A = e S i o Ay VP R e e o o T T e o el s A ¥ o o o

Test Execution Bar Similar
Hame Time Chart Groups
ss5144 7.94 E223 222223222 |

sg142 8.19% (2842222422232 |

s8249 10.20 AEXENKKKRN RN AN SRR 1
s5141 11.10 HERRRENANNR AR NN AR |
35143 20.40 A 222 X2 ARRERSSE AR AR RR] ‘

1 e~ A e e A T e A o o o 4 e S = ot i ok e i ot = i . S B o e o o D S A e o =

o ot ke e > e e o o A 4 e o A i Sy o VO o A i o i " o o B o e o

FUNCTION maxl ( x , y : real ) RETURN real IS
BEGIN
IF x >= y THEN RETURN x ;
ELSE RETURN y ;
END IF ;
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END maxl ;

FUNCTION max2 { x , y : real } RETURN real IS
BEGIN
IF x >= y THEN RETURN x ;
ELSE RETURN y ;
END IF ;
END max2 ;
PRAGMA inline { max2 ) ;

PROCEDURE pmax ( a : OUT real ; b, c¢ : IN real ) IS

BEGIN
IF b >= ¢ THEN a := b ;
ELSE a := ¢ ;
END IF ;
END pmax;

s5141 xx := maxl ( yy , zz ) ;
-- call on local function

55142 xx = max2 ( yy , zz ) ; =-- max2 i= inline of maxl
~~ call on lozal inline function

$s143 xx :=maxl ( 1.0 , maxl ( yy , zz )} ) ;

-~ Call functlion where actual parameter contains another

- - - o o e e e i e o T

33144 IF yy >= 2z THEN xx := yy ! ELSE xx := zz ; END IF ;

-~ example of textual substitution to compare to ssl42

ss249 pmax ( xx , yy , zz ) ;
-- procedure equivalent to function Maxl

- - - - - - e e e e e W

Observatlon 4: ACEC Single System Analysis (SSA) report “Language Feature Overhead” compares
inlined procedures for regular and generic procedures. The paired tests ss621 and ss622, extemal
instantiation, (0% improvement), and ss623 and ss624, same unit, but not local (2% improvement)
show slight execution time decrease for inlined generic procedures over non-inlined generic
procedures. Tests ss625 and ss626, local declarations, show a larger time decrease (28%
improvement) when the generic procedure is inlined. The location of the generic seems to be significant.

ACEC Test Results;

Configuration 1, ACEC Release 2.0, SSA Report “L.anguage Feature Overhead” - “Generic Function

Calls - Intine vs. Non-Inline.”

o S L o e o A B o o o A L o ke D " "

Test Execution Bar Similar
Name Time Chart Groups
ss142 8.19 KrRRKEAKKE XXX XXX KR AR KK XK

58625 8.19 (22288222 22222222222l s

ssl41 11.10 HRRHKARNNEENKRRNERR TN AT RNk kb x |

s8621 11.10 KE KKK IR I A RKRERNA LR ERTR TR TRk N N

58622 11.10 NI AN TR ER IR I R AT RRRA IR RN kNN |
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58626 11.30 RN A IR RN AN RN RN AR TR R NN RN |
85624 11.60 AR AN AR AR AR R AN AR AR AN R AT R R AR I AN |

55623 11.80 AR R RN NN KRR RN NN RN AN R A AR AR K |
........ o 2 o e e o e 22 o O i e S T o S e

Individual Test Descriptions
FUNCTION maxl ( x , y : real ) RCTURN real IS
BEGIN
IF x >= y THEN RETURN x ;
ELSE RETURN y ;

END IF ;
END maxl ;
ss14]1 xx := maxl { yy , zz ) ;
~- call on local function
55142 xx 3= max2 { yy , zz ) ; =-- max2 is inline of maxl
-= call on local inline function
85621 xx 3= max3 (yy , 2z ) ;
-- generic non-inline function, instantiated in external unit

- - - - -—— -

88622 xx := max4 (yy , 22 ) ;
-- generic inline function, instantiated in external unit

- -— - - - = e o S -

83623 xx = max5 ( yy , 2z ) ;

~-=- generic non-inline function, instantiated in same unit
55624 xxX = max6 { yy , 22 ) ;

-~ generic inline function, instantiated in same unit

e . s e e i e it e i P D A e i = T - A =

$8625 xx := max7 (yy , zz ) :
-- local generic inline function,

e e o e e i o s e e e e P - - ——— o

58626 xx := max8 ( yy , zz ) ;
-~ local generic non-inline function,

e e B e i s e s o o - P - - - ———

References

® none
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2.9 Logical Tests

Question: What are the performance trade offs between the case statement and If statement?

Summary: Relatively iittle performance data is available to compare the logical statements (case and
if). The available data suggest that the case statement has slightly better performance and that the
compiler cptimizes logical statements effectively. Coding large logical tests as tables or Boolean arrays
may improve performance.

Discussion: Ada provides several statements which alter program flow based on the results of evalu-
ating an expression. The If and case statements are commonly used o alter the flow of program exe-
cution within a task. The If statement provides more flexibility in defining the logical test, but the two
statements are often semantically equivalent and equally clear. The application programmer therefore
can select between the two statements based on considerations of clarity of expression and perfor-
mance.

Primary performance considerations for logical expressions are speed of execution and the amount of
storage required. Execution speed should consider both the average speed and the variation in speed.

Other considerations include:

* How does the number of alternatives affect performance of the statements?

The algorithm being implemented may require choosing between only two attema-
tives or between hundreds. Performance testing should characterize the range of
small to large number of alternatives.

* How does distribution of the alternatives aftect performance?

The logical test may select among closely spaced, well ordered altemnatives or the
alternatives may be sparsely and randomly distributed. For example, if 100 alterna-
tives were present in the test, there may well be a performance difference when the
choices range consecutively from 1 to 100 versus 100 choices which are randomly
distributed between 1 to 1,000,000. The number of alternatives is the same, but the
internal representation of the selection might vary. The case statement, in particular,
can benefit from the generation of optimal selection strategies {e.g., jump table,
hashed jump table, sequence of comparisons, etc.).

® Do special forms of logical expression allowed for If statements increase speed?

The case statement limits the test expression to discrete types and the choice on the
case statement aiternatives (when) to discrete values or ranges. The Iif offers a num-
ber of variants for equivalent logical expressions. An If can mimic the equivalent
case statement or use a different form that achieves the same result (for instance,
by using the short circuit operators and then and or else, which have been identified
as introducing performance variation).

¢ Does the method(s) used to nest the statements affect performance?

When there are many branches in the logical test, If statements can be nested or ex-
tended without nesting using the elslf clause. Similarly, the case statement can be
nested.
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e Do alternative test methods, such as table look up, offer performance advantages?

If a large or complicated branching structure is required, space or time savings
achieved by programming a specific test may become important. Preparing tests tai-
lored to the problem can use regularities in the data that the Ada compilation system
might not generate automatically. The use of a table look up, indexed by the results
of an expression, might be more efficient than the use of a case statement.

To compare the performance of logical statements, the ideal test set would compare matched sets of
case and If statements, measure the range of variation as well as provide average values for the tests,
and provide both time and space measures. Unfortunately, the standard benchmark suites used for this
report do not provide many head-to-head comparisons between If and case statements in their current
versions.

The AES SSA report compares several alternate logical tests in the two “Test For Letter Being A Vowel”
entries (Observation 4 on page 75). For these tests, the case statement is 23% faster than the If state-
ment,

Several case statements are timed, and the results presented in the AES report entry titled “Case State-
ments.” The case statements are not comparable to each other, nor are the equivalent If statements
provided. This entry seems mostly useful for comparing different Ada compilers.

Observations relevant to other considerations:

* How does the number of alternatives affect performance of the statements?

The ACS Test TG19 (Observation 1 on page 71) notes that “at least 5000” alterna-
tives are allowed for case statements. AES Test TG32 (Observation 1 on page 71)
notes that the case statement permits static hesting of “at least 100" deep.

AES test TG33 (Observation 1 on page 71) notes that the If statement can be stati-
cally nested “at least 100” deep. The AES test TG36 (Observation 1 on page 71)
notes that “at least 100" elsif parts are permitted.

For each of the four tests, the VADS compiler handled the largest test case.

* How does distribution of the alternatives affect performance?

The AES TO17 test (Observation 2 on page 72) examine how the compiler handles
the translation of case statements for various distributions of alternatives. The test
indicates that at least two different forms of representation are used: a jump table for
contiguous ranges of choices and a sequer.ce of comparisons for discontiguous
ranges. Tests for other forms of representation produced indeterminate results. This
suggests that the compiler optimizes case statements using contiguous discrete val-
ues and ranges using conceptually efficient strategies. No timing comparison data or
size measurement is provided.

® Do special forms of logical expression allowed for If statements increase speed?

The ACEC SSA report includes a test of one short circuit operator for the If state-
ment and compares several pairs of If statements performing the same test using dif-
ferent encodings of the logical expression (see Observation 3 on page 73).
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The and then short circuit control form was measured to take somewhat more time
than the equivalent nested version (and then prevents evaluation of the second term
of an expression if the first is false). The measured difference suggests that the and
then can be used for clarity, but that it does not offer improved performance.

The “Simple Relations” tests (Observation 3 on page 73) test a pair of If statements
that have equivalent effect using reversed logical expressions. The timings were
substantially the same.

* Does the method(s) used to nest the statements affect performance?
No data available.

* Do alternative test methods, such as table look-up, offer performance advantages?

The AES SSA compares several alternative logical tests in two comparisons, both
titled “Test For Letter Being A Vowel" (Observation 4 on page 75). Using a Boolean
array is faster than either the If or the case statement, while using function calls is
slower than the two logical statements.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVMES45 VMEbus chassis.

Complier: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: The tests in this observation examine limits on the if and case statements.

The AES TG test series examines the compiler for limits that might constrain the user. The stated test
objective is to detect unreasonably restrictive characteristics, such as a very smail number of enumer-
ation literals, not to find the compiler's maximum capacity. The tests use a relatively coarse binary chop
algorithm to determine approximate limits in a reasonable amount of time. When the key phrase “at
least” is used, the compiler capacity is greater than the maximum tested value.

AES Test Results:
Configuration 1, DIY_AES Version 2.0, Test TG19, TG32, TG33 and TG36.
G.22. TG19
This test detects whether there is an unreasonably small
limit to the number of alternatives in a case statement

permitted by the compiler.

The number of case statement alternatives was found to be
at least 5000.
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G.34.

G.35.

G.38.

TG32
This test detects whether there is an unreasonably smal.l
limit to the number of statically nested case statements

permitted by the compiler in a compilation unit.

The number of statically nested case statements was found
to be at least 100.

TG33

This test detects whether there is an unreasonably small
limit to the number of statically nested if statements
permitted by the compiler in a compilation unit.

The number of statically nested if statements was found
to be at least 100.

TG36

This test detects whether there is an unreasocnably small
limit to the number of elsif parts to an if statement

permitted by the compiler.

The number of elsif parts was found to be at least 100.

Observation 2: The tests in this observation check how case statements are represented.

AES Test Results:
Configuration 1, DIY_AES Version 2.0, Test TO17A-F,

0.17.

TO17 group of tests

There are six tests in this section. Their purpose is to
examine “case” statements with various distributions of
alternatives to see if the compiler optimises them in the
way one would expect.

Test TOl7A examines a “case” statement with an ordered
contiguous range of alternatives. One would expect the
compiler to implement this as a jump table.

The timings produced by this test indicate that the
compiler implements a jump table.

Test TO17B examines a “case” statement with a disordered
contiguous range of alternatives. One would expect the
compiler to implement this as a jump table.

The timings produced by this test indicate that the
compiler implements a jump table.
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Test TO17C examines a “case” statement with an ordered
contiguous set of ordered contiguous ranges of
alternatives. One would expect the compiler to implement
this as a sequence of comparisons.

The timings produced by this test indicate that the
compiler implements a sequence of comparisons.

Test TOl7D examines a “case” statement with a sparse
random range of alternatives. One would expect the
compiler to implement this as a binary chop.

Test failed. Aborted by user reguest
TEST.TST did not set RESULTANT_STATE

'S Note: Test appeared to run indefinitely .

Test TOL7E examines a “case” statement with a dense
random range of alternatives. One would expect the
compiler to implement this as a hashed jump table.

The timings produced by this test indicate that the
compiler implements a jump table.

Test TO17F examines a “case” statement with few explicit
chojces and most of the alternatives in 'others’. One
would expect the compiler to implement this as a sequence
of comparisons.

The timings produced by the test were too inconclusive to
suggest any particular method.

Observation 3: The ACEC compares several pairs of logically equivalent If statements. Each pair
produces the same logical result by different means.

The and If short circuit operator is slower than a nested If pair. Use of a not to reverse a test result is
slower than reversing the sense of the test (presumably the reversed test benefits from requiring one
fewer logical operation).

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Reports “Coding Style Variations™
® “Nested IF vs. AND THEN"

* “Simple Relations” [Tests ss494 and ss495]
* “Simple Relations” {Tests ss497 and ss496)

o o e i - o > o o o o o
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Test Execution Bar gimilar
Name Time Chart Groups
55490 4,02 AN AR AT AR RN AR I N A RRANRRR N AN

55491 4.69 HER AN T KA R AN R TR ENA NS R R AN KA ANT NN

$ss490 FOR 1 IN 1..2
Loop
IF ii = 0
THEN
IF bool
THEN
die
END IF;
END IF;
ii := 1 - ii;
END LOOP;
ss491 FOR i IN 1..2
LOooP
IF ii = 0 AND THEN bool
THEN
die;
END IF;
ii 1= 1 = i4;
END LOOP;

Simple Relatlons

Test Executicon Bar Similar
Name Time Chart Groups
55494 .77 AEEREBERWNARRAARA AR AR XK
55495 1.08 E 222222 RAR RSS2 R2 SRS 2

Individual Test Descriptions
38494 IF 11 = mm THEN die; END IF;

Test Execution Bar Similar
Name Time Chart Groups
55497 4“28 L A2 AR AR AL LR R RS R R R R RS R R R R R ER RN ;

35496 4_39 \AEA RS S A S SRR AR R R E R RS R RS RS R A

Individuai Test Descriptions

55496 ¥ NOT Bool AND 1)
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Observation 4: The ACEC compares logical tasts by implementing the same test with different logical
statements. Case and If statements are compared along with some additional test methods. Ali the

tests perform a logical test to determine if a single character is a vowel.

The case statement is faster than the if statement, and both are slower than a table lookup.

ACEC Test Results:
Configuration 1, ACEC Version 2.0, SSA Report “Coding Style Variations”

® “Test for Letter Being a Vowel” [Tests 55486, $s488, 55489, s5492 and s5487]
* “Test for Letter Being a Vowe!” [Tests 55479, 55482, 55481, 55493 and ss480]

Coding Style Variations

Test Execution Bar Similar
Name Time Chart Groups
ss486 1.55 \22 32 RSS2 S

55488 2.50 2222222222222 202

ss489 3.25 L R R S R AT T R

55492 3.58 I32 22822022 2233 s R RS RS 2]

ss487 4.50 EEXTAAL XA ARTRAA N A AR R AR A G AR d b {

e e e o e o 7 S e = e o e 4B A e S o o = = Y = W e e o
e s e o 9O . Al ks i e e P . ke W R e A . R o A e e L A 0 o
e e " = = e o = - e P = = T Yo o e oy W o

e e S o 2 T o i e 1 ! S i o e AR R e i A 2 o = o T

55488 CASE char IS
WHEN A" J'E’’TI*}'Q’ {'U"' => bool := True;
WHEN OTHERS => bcol := False;
end case;

Test Execution Bar Similar
Name Time Chart Groups
8479 80.980 R IR TN RN AN

58482 110.60 (22 R R R R T R

55481 126.00 AR AR A KA R AR RS AR R 2

584973 178.80 FXTAR AR ER A AR XTI AN O AT RSV RN R

55480 18/..0 22 A A AR R R SR R KA R R R R AR R AR RS AR R A RS
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35479

char := "A';
WHILE char <= '2°
Loop
IF is_a _vowel 1 { char ) THEN procO; END IF;
-~ is_a_vowel 1 is poolean array of char
char := character’succ { char ):
END LOOP;

char := ‘A’;
WHILE char <= *'2'
LooP
IF is_a_vowel_2 { char } THEN procD; END IF;
-- is_a_vowel_2 is local function returning boolean
char := character’succ ( char };

END LOOP;
55481 char := 'A‘;

WHILE char <= *2’

LOOP
IF char='A’ or char=‘E’' or char='I’' or char='0’ or char='U’
THEN procQ;
END IF;
char := character’succ ( char );

END LOCP;

char := 'p’;
WHILE char <= ’2*
LOQP
CASE char IS
when ‘A’ I’E’|’I"|'0’|'U’ => procl;
when others=>null;
END CASE;
char := character’succ { char );
END LOOP;

char := *A’;
WHILE char <= 'Z’
LOOP
IF is_a_vowel 3 { char } THEN procO; END IF;
~- is a_vowel_3 is function in external package
char := character’sucec { char };
END LOOP;

- ot e e it A o Sk T W A = e S hd e S o T o o A Y e e e o S e e

References
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2.10 Loop Efficiency

Question: Do different loop constructs vary in efficiency?

Summary: The most efficient ioop construct is the for loop (forward or reverse;. Loop exit and
optimizations are discussed below.

Discussion: Ada provides several statements which can be used to construct loops. These include for,
while, loop, and goto based loops. Since the loops can be made equivalent, the application program-
mer can select the appropriate construct based on considerations of style and performance.

Perdormance of comparable loop constructs should explore raw speed and the variation caused by dif-
ferent forms of indices.

Available tests performing direct comparison of likely loop constructs conclude that the for loop (for-
ward and in reverse) is the fastest loop construct. However, unrolled ioops are even faster. The avail-
able tests do not explore variation in the range specification adequately.

Observation 2 explores some loop optimizations. Optimization necessarily exploits a large number of
techniques, which apply to special cases. Of particular note for high performance applications, loops
are not unrolied, which suggests that hand-unrolling may be a useful tactic for maximum performance.
However, tests on arrays with loop assignment compared to hand-unroilled equivalents suggests that
execution speed for hand-unrolled array operations should be checked tor individual cases rather than
assuming hand-unrolled loops for arrays will reduce execution time (see Arrays on page 7).

Observation 3 shows that the exit statement is the most etfective means of short-circuiting a loop.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory moduie board in a Motorola MVME945 VMEbus chassis.

Compller: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Varsion 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: Both the AES and ACEC measure the performance of loop constructs and compare
their execution speed. Both conclude that the for loop is the fastest loop construct for configuration #1.

The ACEC Single System Analysis (SSA) report compares times for several styles of loops repetitively
calling a procedure (included below). The best time value is for an “unrolled” loop (i.e.. no loop, a series
of procedure calls). The best times for actual loops are for for loops in forward and reverse directions.
These results are for small loops with constant loop parameters. The design used measures the exe-
cution time for the whole execution of the loop for a fixed number of iterations.
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The AES test Ti11 compares four loop constructs (see below). The for loop is the most efficient con-
struct. The test design attempts to raeasure only the execution time for a singte loop iteration, factoring
out the time used to initialize and exit the loop. The test loop parameters are based on the clock reso-
lution, rather than having a fixed value. (The loop iteration value varies according to the clock resolution,
rather being a value fixed at compilation.)

ACEC Test Results:
Configuration 1, ACEC Release 2.0, Tests TI02A-F.

o o o st o 2 e o o A L o W T n ot v e e A A T - =

Test Execution Bar Similar
Name Time Chart Groups

55642 22.10 AN AN IR RA AN R &R

85105 27.40 A I N TR AR A X TR NIRRT A NP TN |

55387 27.50 AN AR E AR XA AN A AN R A AN IR

s5385x 30.60 XX ERF NI AAR AN TAR A AR E R

55183 30.90 PRI R R R A AR TR RI I NRNNCNRR TSN ;
55182 32.00 [T 2SR RS T2 ST TR TR

55386 36.60 R AR R AR R AT AR E NN AT TN AN RNN AR R

55385 36.70 EHRNR AN A RN A AR IR I NRN TN N TR AR N TR,

55184 37.80 AR R A AT RN NN AL AN XA AR ERIR RN AN

o m m t = Y T = . W o o T . " = "~ o~ o

ss105 FOR i in 1..10 LOOP procl ; END LOQ? ;

e = e e = = e A T o e e i = o

LOOP procO ; 1i := i1 - 1 ; EXIT WHEN {i <= 0 ;

LOoOP preel ; 1i := ii - 1 ;
IF ii <= {0 THEN EXIT ; END IF ;
END LOOP ;

55184 ii := 10 ; procO ; 14 = 41 - 1 ;
Loop EXIT WHEN ii <= 0 ; proc0 ; ii := ii - 1 ;

ss385 i1 := 10 ;
WHILE ii > 0 LOOP procO ; ii := ii - 1 ;
END LOOP ;
5s385x i1 := 10 ;
<<label_ for_goto_version>>
procQO ; ii := iif -~ 1 ;
IF ii > 0 THEN GOTO label! for goto_version ; END IF ;

ss38e ii := 10 ;

LOOP EXIT WHEN i1 <= 0 ; proel ; ii := 33 - 1
END LCOP ;
ss387 FOR 1 IN REVERSE 1..10 LOOP procQ NT: LOOP
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Configuration 1, DIY_AES Version 2.0, Tests TI02A-F.

I.26. TI1l

This test examines the runtime efficiency of loop
statements. The time per iteration for each of the four
types of loop, using integer loop control variables is

measured.

e —————— e ——— bmm—————————————— +
| Type of loop | Cpu Overhead |
{ | per iteration |
F e e o e e e o —————— +
| Simple loop | 1.66us |
{ WHILE loop i 1.61us |
{ Forward FOR loop | 409ns

| Reversed FOR locp | $73ns !
prmm e — e —————— B T P +

Observation 2: Both the ACEC and AES test suites provide information on the various loop

optimizations (see included text below).

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Repornt “Optimization:”
+ “Loop Unrolling,” page 79
+ “Loop Flattening : 2 Dimensional Arrays of Real,” page 80
*  “Loop invariant Motion” [Tests ss212 and ss3), page 80
*  “Loop Invariant Motion” [Tests ss429 and ss430), page 81
* “Loop Invariant Motion” [Tests ss536 and ss535], page 81
»  “Loop Invariant Motion” [Tests ss752 and ss11], page 81
*  “FOR LOOP with NULL Body,” page 82

Optimizations
Loop Unrolling
Test Execution Bar Similar
Name Time Chart Groups
55238 0'78 E 22222 RS2 2SR i
ss] 0.78 (322223222 22 2] I
3517 1.41 L2222 22222228 R AR SRS ]
5557 1.42 (AR AARAS LRSS RS ;
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ss3 xX 1= yy ;

-~ Assignment of two floating point variables, library scope.
5517 el (el ) := one ;

-~ assignment to one dimensional array of real.

ss57 el (i) := one ; =-- i is LOOP index

~- Test subscript computation using FOR LOOP index.

ss238 FOR i IN 1..1 LOOP el (1) := one ; END LOOP ;
-- can unroll LOOP into single assignment statement

-- simple example amenable to LOOP unrolling

55240 FOR i IN 1..2 LOOP el ( i) := one ; END LOOP ;
-- simple example amenable to LOOP unrolling

Loop flattening : 2 Dimensional Arrays Of Real

Test Execution Bar Similar
Name Time Chart Groups
ss18 3.96 * |
55405 156‘40 A2 AR SRR RRRs a2 R R 24 l
Individual Test Descriptions

If time to execute 55405 is less than 100 times the time to execute
5318, then the compilation system is treating subscript calculations
using for loop indexes better than general usage. May be using
strength reduction, register allocation, or other techniques including
loop flattening. Flattening is the merging of the two nested loops
into one larger loop.
e2 : ARRAY ( int’(1)..int’(10) ,int’(1}..int’{(10) ) OF real

s= (int’ (1) ..4int’ (10) =>( int’ (1)..int’ {10) =>1.0)};
ei, ej, ek : int 2= 1;

ssl8 e2 ( ei, e} ) := one ;
~- assignme-t to two dimensional array of real. Checking.
53405 FOR {1 IN 1 .. 10 LOOP
FOR j IN 1 .. 10 LOOP
e2 (int (1), int ( ) )} := one ;

END LOCP ;
END LOOP ;
~- nested FOR loop to access a 2D array -- loops could be flattened
Loop Invariant Motion
Description Optimized?
Time : 55212 ( 9.9 ) vs ss3 ( 0.8 ) no
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88212 FOR i IN 1..10 LOOP xXx 1= yy ; END LOOP ;
-~ example where invariant motion is possible

ss3 XX = yy 2
Loop Invariant Motion
Description Optimized?
Time : ss429 ¢ 3.2 ) vs ss430 ( 3.2 ) yes

FUNCTION al { i : int ) RETURN int IS
cal : CONSTANT ARRAY ( int’{0)..int’ {2) ) OF int := (0O, 1, I} ;
BEGIN
RETURN cal ( 1) ;
END al ;
55429 ii := al { ei ) ;
-- Is constant static array promoted to outer level?
ca2 : CONSTANT BRRAY { int’(0)..int’(2) ) OF int := (0, 1, 2) ;
FUNCTION a2 ( { : int ) RETURN int IS
BEGIN
RETURN ca2 { i) ;
END a2 ;
s5430 ii := a2 ( el ) ; -~-non-local constant array
-- Is constant static array promoted to cuter level?

- —_——— - e =~ i e~ = e e~ - A - -~

Loop Invariant Motion

Description Optimized?
Time : ss536 ( 283.1 ) vs 85535 ( 91.7 ) nostatistics

58536 FOR 1 IN l..mm LOOP
xx := 0.0 ;
FOR k IN el’RANGE LOOP
XX 1= xx + el ( k) ** 2 ;
END LOOP ;
END LOOP ; -~ xx is computed from invariants in ’'1l’ loop
-- very smart optimizer can do inner loop once
55535 xx := 0.0 ;
FOR k IN el’RANGE LOOP
xXx = xx + el (k) ** 2 ;
END LOOP ; -- sample to embed in code for ss536

Description Optimized?
Time : ss5752 { 9.9 ) vs ss11 ( 0.8 ) nostatistics
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$s752 FOR i IN 1..10 LOOP 4ii := 43 ; END LOCP ;
~- could be optimized into an assignment statement, ssli

- o e e o o 7 S - = 7 7 o e ot 0 o . o o S A O Nl ot T O o e
- 2 05 00 12 Sy o S > o T 7 o o W 2 A o A e b L o o e e e 4 e A ot e 0

ss106 FOR i IN 1..10
LOOP
NULL ;
END LOOP ; -- noop
-- FOR loop with null body, cculd be noop.

- - =t o e e S o A= o7 Y P o w0 T O e Y $% . S s T e

Configuration 1, DIY_AES Version 2.0, Tests TI03.

©.3. TOL3
This test checks loop optimisations.

Some loop 4invariant array addressing expressions are
hoisted ocut of the body of a loop.

Some loop invariant statements are hoisted out of the
body of a loop.

Simple loops iterating twice are not unrolled.
Simple loops iterating three times are not unrolled.

Constraint checks are not removed from the body of a
loop.

Observation 3: The ACEC tests the efficiency of various methods for exiting loops. The exit statement
with logical test was more efficient than either an If statement enclosing a simple exit or a goto

statement.

The condition for exit was a simple “greater than” test.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report “L.anguage Feature Overhead” - “EXIT from FOR
LOOP."
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Test Execution Bar Similar
Name Time Chart Groups
85354 3.49 AR AR R AN TR RR AN R U R RN RN NN NN |

ssi55 4.12 KEXA RS - AR AR AR R AN AR AR AR NNRTRN NN |

ss356 4.158 HEARKA KRR AR ANAAN TN RN IR AR ANTAN R AW {

ss354 FOR i IN 1..ej
LOOP
procl ;
EXIT WHEN 11 > 0 ;
END LCOP ;
-- EXIT from FOR LOOP with “EXIT WHEN"
55355 FOR { IN 1l..ej
LoOP
procO0 ;
IF 11 > 0
THEN
EXIT ;
END IF ;
END LOOP ;
-- EXIT from FOR LOOP with "“IF ... THEN EXIT"
ss5356 FOR 1 IN 1l..ej
LOOP
procO ;
IF 11
THEN
GOTO g ;
END IF ;
END LOOP ;
<<g>> NULL ;
-~ EXIT from FOR LOOP with "IF ... THEN GOTO"

v
o

Reterences

¢ none
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2.11 Module Size

Question: s the performance of a program divided into modules different from a monolithic design?

Summary: Compared to a monolithic design, the execution time ot a modular program can be
expected 10 increase to accommodate the costs of calling the procedures used for partitioning. The
percentage increase could not be quantified, since it depends upon the application. No information
about the size eftects of module use is provided. Compiler support for partitioning of a program into
modules was measured statically. There are no limitations detected in compiler support.

Discussion: While the division of programs into modules is recommended for program clarity and
maintainability, there may be performance consequences. If, for instance, division into smaller modules
adds a significant number of procedure calls, the execution time may increase. The use of procedures
might reduce program size by allowing more code sharing, or increase it due to additional code inserted
for procedure calls.

Issues relating to the use of modules include:

® is the number of modules supported by the compiler limited?
* How does performance change for programs using smaller modules?
* How is program size affected by use of small modules?

Compiller Limits

When numerous modules are used for a large software program, limits may be found in the compilation
system. Some limits relate to the exhaustion of finite physical resources, such as secondary storage or
system memory, while other limits might be caused by fixed sizes in the compilation system itself. De-
tecting such limits reliably is difficult and expensive, since host system configurations are complex com-
binations of hardware and software.

Chservation 1 on page 87 presents the results of limit testing which are relevant to modules. There are
no observed limits which strongly preclude the use of modules. These tests do not attempt to overload
the library system, and, therefore, do not predict the maximum possible program size.

Performance

Performance change due to the use of modules is conventionally addressed by measuring the over-
head of entering and leaving the module (procedure). This cost varies with the complexity of the proce-
dure call and is a combination of overhead relating to the transfer of control and the amount and type
of data which are transferred.
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Observation 2 on page 88 provides information on overhead, and Observation 3 on page 95 presents
some supplemental information on the number of parameters. Some fairly obvious conclusions can be
drawn from this data:

* The time required to call a procedure varies with the type of procedures.

¢ The time required to call a procedure increases as the amount of data transferred
increases.

The percentage change in execution time caused by modules cannot be determined solely from mea-
surement of calling overhead. if we assume that the time required to switch to a procedure is indepen-
dent of the time required to complete the work within a procedure, the time overhead tor dividing a
program into small modules clearly relates the amount of work done by each module compared to the
number of times a module is called. Thus the overhead of procedures can only be calculated when the
execution times for procedure bodies is known or reliably estimated and the calling profile for the pro-
gram is known. This information is not avaitable for this report.

From the measurement of procedure overhead, the performance cost of using modules is minimized by:
* Picking subdivision points to minimize the number of calls. (Inlining should be

considered for frequently called smaller procedures.)

® Keeping the number of arguments as small as possible, using constrained types
where possible.

® Avoiding trivial procedure bodies: the procedure should perform an appreciable unit
of work. This requirement can be relaxed if inlining is used.
The placement of procedures locally or in packages external to the test routine does not appear to have
a strong effect on performance.

The performance effects of using common data areas to avoid passing arguments o procedures was
not examined. Since Ada procedures are fully reentrant and potentially callable from multiple tasks, this
expedient should be carefully considered before use.

Size

Program size can be changed by subdivision. Subdivision adds extra code and storage for movement
between modules but reduces program size when code can be shared. The use ot inlining and generic
procedures also can alter the size of a program.

Size issues were not tested during the preparation of this report.

neri nd Inlin

The behavior of inline and generic routines is addressed in other segments of this report. The speed of
inlined procedures approaches that of user-prepared inline code, while generic units impose a small but
measurable increase in execution speed. No information was collected on size effects of inlining or ge-
nerics.
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Contiguration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instnuction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEDbus chassis.

Compiller: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: The AES provides limit testing, including some tests relevant to the use of modules.
None of the limit tests attempts o stress the capacity limits of the compiler. No unreasonably small limits

were detected.

AES Test Resylts:

Configuration 1, DIY_AES Version 2.0, Group G, Tests TG07, TG08, TG24, TG25, TG26, TG28 and

TG30.

G. Group G - Compiler Capacity Tests

G.8. TGO7
This test determines whether there is an unreasonably
small limit to the number of WITHed units in a

compilation unit.

The number of WITHed units was found to be at least 50.

G.9. TGO08

This test determines whether there is an unreasonably
small limit to the number of USEd units in a compilation
unit.

The number of USEd units was found tc be at least 10.

G.26. TG24

This test detects whether there is an unreasonably small
limit to the number of subprograms permitted by the
compiler in a compilation unit. The test is performed
with  equal numbers of parameterless procedures and
functions.

The number of subprograms was found to be between 212 and
324.

G.27. TG2S5
This test determines whether there is any unreasonably

small limit to the number of packages permitted by the
conpiler in a compilation unit.
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The number of packages was found to be at least 5C.

G.30. TG28

This test detects whether there is an unreascnably small
limit to the number of statically nested subprograms
permitted by the compiler.

The number of statically nested subprograms was found to
be between 32 and 43.

G.32. TG30

This test detects whether there is an unreasonably small
limit to the number of statically nested subunits
permitted by the compiler in a compilation unit.

The number of statically nested subunits was found to be
between 10 and 21.

Observation 2: Numerous tests of procedure call overhead are provided by the test suites. Their
results are provided below.

The location of the procedure (local or external) does not appear to have a large effect on performance.
The amount of data transferred as parameters has a large effect on calling speed, while the type of ar-
gument has some effects. However, in comparing the type of arguments, size effect, exemplified by the
actual number of storage units transferred, should be considered. For instance, the ACEC report “Call
Procedures with multiple parameters™ (page 91) compares calls using 8 integer and 8 floating point ar-
guments. To compare the tests, definitions of the two types Int and real must be examined (for the Ver-
dix compiler, the definitions could be represented by 4 bytes each).

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Report “Language Feature Overhead™:
* “Function versus Procedure,” page 88
* “Procedure Calls with Null Body," page 89
® “Subprogram Calls - Formal Generic Procedure,” page 90
® “Subprogram Calls - Call Local Nested Procedure,” page 90
¢ “Call Procedures with Multiple Parameters,” page 91
* “Subprogram Calls - Parameters : Unconstrained Formal,” page 91
® “Subprogram Calls-Parameters : Unconstrained Array Parameter,” page 91
* “Subprogram Calls-Parameters : Constrained Record Parameter,” page 92
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13247 9.98 AR RN RT AT R R ARAR |
58248 20.10 NN AN R R A E AN AN R AR F R CRATRARE RSN i

This test compares returning a function value and an out mod
parameter from a procedure.

TYPE rec_array IS ARRAY { int’(1)..int’({4) } OF byte ;
SUBTYPE c¢2 IS string ( 1..2 )

subtype c8 is string ( 1..8 }

cce , hex : c8;

FUNCTION f { x : real ) RETURN c8 15

BEGIN
IF % > 0.0 THEN RETURN mexasxssxs;
ELSE RETURN * -;
END IF :
END £ ;

PROCEDURE p { x :IN real ; ¢ : OUT ¢8 ) IS

BEGIN
IF x > 0.0 THEN € 1= ®whawsawsd
ELSE ¢ := * *
END IF ;
END p ;

ss248 p ( one , ccc ) ;
-- procedure which returns string

s8247 ccc := £ ( one ) ;
-~ function which returns string
Procedure Calls With Null Body
Test Execution Bar Similar
Name Time Chart Groups
ss0 0.00 !
5536 2.30 L2 222F233 23232232222 2asRdR2a R '
58260 2.51 3222233222 222233 S22 2 R22 22222222 {

Individual Test Descriptions

PROCEDURE n IS
BEGIN
NULL ;
END n ;
ss0 NULL ;
-~ Language feature test, null statement
3536 procO ;
«~ call on external null procedure
55260 n;
~- local procedure call, body is null
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- 22 0 o n o o o o @ ——— e it s B0 o e o W e B e T 2t o e
Test Execution Bar Similar

Name Time Chart Croups

8836 2.30 AR K RRT TR RN S ARTT AN ANES 1

ss478 3.3¢ P 22232223 222 R2 2 A 2 A AR R AR R AR LA |

5836 procl
-- call to library scope procedure with no parameters; body is null.

ss478 p0467204 ;
-~ call procedure which is a generic formal parameter. The actual
-- procedure is proc0; an external procedure with a null bedy.

Test Execution exr Similar
Name Time Chart Groups
55361 4.32 AN IRARAREA AR TR R AR AT T AR |

55360 4.69 P T L PR S 2222222 22222 2222 X |

PROCEDURE LO IS -- same body as L2, but at different

BEGIN -- structural level from it‘s calling point
procO;

END LO;

PROCEDURE L1 IS
PROCEDURE L2 IS
BEGIN

procO;
END L2;

PROCEDURE L3 IS

PROCEDURE L4 IS

BEGIN
PRAGMA include (“startime®);

L2;

PRAGMA include (“stoptime0”);
put (*ss361 L2; ~-- null procedure at non-main nesting level®);
PRAGMA include(“stoptime2”};

END L4;
BEGIN -= body of L3
L4;
END L3;
BEGIN -~ body of L1
L3;
END L1;

o e et e A o e e R b A . o o G A e = O S o A o

58360 Lo ;
-- call local procedure

ss361 Ll :
-~ ¢all null procedure at non-main nesting level

90
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Test Execution Bar Similar
Name Time Chart Groups
58584 9.67 EARFTARARY :

ss585 38.30 AR N AN AR AR ANF AT RN RTRTINRRNERN IR AR R D t

PROCEDURE pi8 ( il , 42 , i3, 14 , 45, i6 , i? , i8 : IN int ) IS
BEGIN

ii 3= 11 + 42 + i3 + i4 + 45 + i6 + i7 + 18 ;
END piB;

PROCEDURE pf8 ( £f1 , f2 , £3 , f4 , £5 , f6 , £7 , f8 : IN vreal ) IS
BEGIN
xx := f1 + £2 + £f3 + f4 + £S5 + f6 + £7 + £8 ;
END pf8;
ss584 pi8 (1, 2,3, 4,5 ,6, 7, 8) ;
-~ call procedure with 8 integer parameters

ss585 pfg8 (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ;
-~ call procedure with 8 float parameters

Subprogram Calls - Parameters : Unconstrained Formal

Test Execution Bar Similar

Name Time Chart Groups

$8613 2.46 (2222228222222 2222222222 2 0 1 |

55616 2.68 L2322 2222222222223 2222222222222 2R X7 f
Individual Test Descriptions

83613 proc_record_reference ( pat ) ;
-~ pass parameter to unconstrained formal. Checking enabled.

ss616 proc_record reference { pat } ;
-~ pass parameter to unconstrained formal. Suppress checking.

Subprogram Calls-Parameters : Unconstrained Array Parameter

Test Execution Bar similar
Name Time Chart Groups
38614 2.32 L2232 22222 el 222222 s 2222 ]

88617 2.51 AAREEK IR T AR R A AR AN FANRRERE R A RN RNk {

$s614 proc_vector { a20 ) ;
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-~ pass parameter to unconstrained formal. Checking enabled.

s8617 proc_vector { a20 } ;
-~ pass parameter to unconstrained formal. Suppress checking.

. T = " > = W = > A o A e - A T e " - - e - o

Test Execution Bar Similar
Name Time Chart Groups
ss615 2.22 AR A AT R AR R AN TR AN RN T AR AR RGN 1

53618 2.35% AT AN RRAN RN ARSI R AN A AR R AN R AN ERANE X

55615 proc_tl_rec ( ra )
~- pass parameter to unconstrained formal. Checking enabled.

$s618 proc_tl_rec { ra ) ;
~- pass parameter to unconstrained formal. Suppress checking.

Configuration 1, AES Version DIYAES 2.0, Group 1, Test TI10.

Note that most of the inlining tests were removed by optimization (see above). These observations
are marked with the phrase 5 Iniining resutits Invalld for the following table.

Note that the tests of inlined procedures are invalid, with exception of results for infined integer param-
eters. The remaining tests of inlined procedure calls record execution times of zero seconds for the in-
lined routines, which invalidates the comparison to the non-inlined routines. Analysis of the test source
code shows that the calling times are measured for paired procedures. The inlined version of the pairs
lacks anti-optimization code present in the non-inlined version to access the procedure’s argument. Al-
though this anti-optimization code is protected from actual execution during testing, omitting this code
allows the compiler to remove all the test code.

I. Group I - Runtime Efficiency Tests

I.25. TI1O

This test examines the runtime efficiency of subprogram
calls, in particular, the passing of scalar and
non-scalar parameters using the “in”, “in out”, “out” and
“return” modes. The test also determines whether the
parameters are passed by copy or by refecence. The
overheads of subprogram entry and exit are included in
the measured costs. The test is performed for INLINEd and
non-INLINEd subprograms.

Test TOO05 indicates that inlining is performed for some
simple procedures but not for some procedures which are
fairly difficult to inline.
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Integer parameters:

o v o e e P o - o e v B +
|  Mode ! Passing | Cpu | Passing | Cpu

| i Mechanism | Time | Mechanism ! Time

1 | ! I (INLINEd) ! (INLINEd)

Fom et R R kbt B e et - Frr - bW o -

| in | COPY { 7.82us | cOoPY | 246ns

I in out | COPY I 5.90us ! CcOoPY } 510ns

| out | COPY | 5.57us | COPY i 253ns

| return | - { 6.04us | - { -

+ o o o am P ——————— o ———— e ——————— o

Unconstrained array parameters (array of 256 integers):

5 Inlining resuits invalid for the following table

tomm - —— e, ———— - Fo - —————— b —————
|  Mode I Passing | Cpu | Passing | Cpu

| | Mechanism | Time | Mechanism | Time

| i I { (INLINEd) | (INLINEQ)
o tevmmcw————— tormm———— e ————— - ———
I in | REF | 7.6%us | REF | Os

I in out | REF | 7.69%us | REF | Js

} cut | REF t 8.6lus | REF t Os

} return | - | 22%us | - 1 -

o emme—ee L -, b obmm e — Fom e +

Constrained array parameters (array of 256 integers):

¥¥Inlining results invalid for the following table

o ———— e n—————— o — - e ——————— e - ——-— +

| Mode | Passing | Cpu | Passing | Cnu

| | Mechanism | Time | Mechanism | Time

| f | | (INLINEd} | (INLINEdQ)

temrm————— e ——— R — b ————— R LT T . +

I in i REF ! 7.23us | REF { Os

| in ou | REF ! 6.9%us | REF i Us

[ out | REF I €.7%us | REF ! Os

i return | - { 22%us | - i -

b ———— b i ——— o ——— tormm i —— tommmm————— +

Simple record parameters (record of 256 components):
5¥Inlining results invalid for the followIng table

trmr e ———— e —————— Form - b ———————— b ——————— +

| Mode | Passing | Cpu | Passing | Cpu

] | Mechanism | Time | Mechanism | Time

I i ] ! (INLINEd) | (INLINEd)

Ao Fommmmam—— b mam tommmr e o ——— +

} in | REF | 7.37us | REF t Os

I in out | REF { 6.86us | REF 1 Os

] out | REF { 6.79%as | REF i Os

| return | - i 233us | ~ | -

o m e —— o ——— fm—m i —— R it Rt +

Discriminated record parameters (recard of 256

components) @
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¥ |nlining results invalid for the foliowing table

Fomm e Fupp— JER—. b P v m——— b +
| Mode | Passinag | Cpu | Passing | Cpu !
| | Mechanism | Time | Mechanism | Time |
| | { I (INLINEd) | (INLIKEd) ¢
o ————— e ———— o m———- o o ——————— +
| in | REF { 6.86us | REF t Os
] in out | REF i 6.B4us | REF i O0s |
| out REF t 6.84us | REF ] O0s |
| return | - { 234us | - ! ~ i
P m e trm e ——— dmm—m————— e ————— B el LT Ru +
PIWG Test Results:
Contfiguration 1, PIWG 12/12/87 Release, Tests P000001-P000007.
vads ada/optimize=4/errors=(listing,output) ‘File_Name’
Test Name: PO00OO1 Class Name: Proccedure
CPU Time: 2.3 microseconds
Wall Time: 2.4 microseconds. Iteration Count: 2048

Test Description:

Procedure call and return time { may be zero if automatic inlining )
procedure is local

no parameters

Test Name: PO00O002 Class Name: Procedure
CPU Time: 2.4 microseconds
Wall Time: 2.4 microseconds. Iteration Count: 2048

Test Description:

Procedure call and return time
Procedure is local, no parameters
when procedure is not inlinable

Test Name: P000003 Class Name: Procedure
CPU Time: 1.9 microseconds
Wall Time: 1.9 microseconds. Iteration Count: 2048

Test Description:

Procedure call and return time measurement

The procedure is in a separately compiled package
Compare to PO00D02

Test Name: P0O0O0004 Class Name: Proacedure
CPU Time: 0.5 microseconds
Wall Time: 0.5 microseconds. Iteration Count: 2048

Test Description:

Procedure call and return time measurement

The procedure is in a separately compiled package
pragma INLINE used. Compare to P000001

Test Name: PQ0000S Class Name: Procedure
CPU Time: 2.3 microseconds
Wall Time: 2.3 microseconds. Iteration Count: 2048

Test Description:

Procedure call and return time measurement

The procedure is in a separately compiled package
Cne parameter, in INTEGER
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Test Name: P0O00COE Class Name: Procedure
CPU Time: 2.9 microseconds

Wall Time: 2.9 microseconds. Iteration Count: 2048
Test Description:

Procedure call and return time measurement

The procedure is in a separately compiled package

One parameteyr, out INTEGER

Test Name: p0C0Q07 Class Name: Procedure
CPU Time: 3.0 microseconds
Wall Time: 3.0 microseconds. Iteration Count: 2048

Test Description:

Procedure call and return time measurement

The procedure is in a separately compiled package
One parameter, in out INTEGER

Observation 3: Tests in this observation examine the effects of the number and ordering of arguments.
As the number of arguments increases, the time to access a procedure increases. The ordering of
arguments in a procedure call does not appear to have an effect on performance.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report “Language Feature Overhead™:
® “Subprogram Calis-Reference to 1st to 9th Integer Parameter,” page 95
* “Subprogram Calls-Reference to 1st to 9th Float Parameter,” page 96

* “Procedure with 3 Default Parameters,” page 96
* “Subprogram Calls; With 0..3 Parameters,” page 97

e " " o 218 e T T St o T S e P A ] B A= A S o s e T A

2 e B Y T D s o s S o O e s T o L WM A 4 P el e o o e = T o o e

Test Execution Bar Similar
Name Time Chart Groups
58566 0.77 AN T AN R R A TR AN AT AN N NN TR E 1

85567 0.77 AEA A IR IR AR AR AN AR R R AR RN AR RN \

58568 0.77 L2 ST TS TR T R TR RY T L R T P e e ey |

58571 .77 122 2 2 L TR TR 2T R R T 2 Y !

58574 0.77 e 22 2 e T A I R e e T i

55569 0.78 AR NI AN R R AR R AR R RIS AR A RN |
88570 0.78 1322 2 2 T TR L2 T Y X R N )
885712 0.78 LA 2 I 2 I R A AR 2 R RS i
88573 0.78 I2 222 R e e s s RS PR R R TR 2 22 }

- o . 8 4k T e e e . B S B o S T s . i . P A YR D 2 T T o = 8 e o T = W o e

o ot o Al o e St b S 4l M . 490 R e T A i T e e M i S > o A ok . T Y i T = S o e

o B0 O i e L U . U A o o A 4 e 0 T i e o A S e T 2 S S A e e T o
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28568 i1 = 13 ; ~- reference to third formal integer parameter

38569 11 = 14 ; ~~- reference to fourth formal integer parameter
43570 i1 1 15 ;- reference to {ifth formal integer parameter
23571 it 1 16 1 -~ reference to sixth formal integer parameter
25572 {1 1= 17 ; -~ reference to seventh formal inteaer parameter
<5573 11 - 18 ; - reference to eighth formal integer parameter
23570 11 1= 19 ; -~ reference to ninth formal integer parameter

Test Execution Bar similar
Name Time Chart Groups
88575 0.78 AR AN N R AN R I AR RN A R AN RN R AR KT RS i

ss577 0.78 A AN R RN T AN R T A IR AR RIRE AN IR AR AT Nk &

ss578 0.78 AN AT RNER R NRENNN I AT IR R AT RN

88579 0.78 13 R R R A R T R L ] {

ss580 0.78 RKWRANAR NN RRARR PR A RN AR R R R RN R |

ss582 0.78 AT AR AR RN IR AN AR NRN R AR AN AR R RN R |

55576 0.78 AN AR NN EA NN RN RA RN R AT A ANRNN N ATk |

ss581 0.78 AT AR TR R AN AT R ARSI NN R RAN RSN NEANRRRD |

38583 0.78 AN R AN RN F RN NN N RN I AT TR TR TN RN |

Individual Test Descriptions

s e s o e o e o o s . o 1 ) R0, S A Bt S o o ol i A M S i i o S P i S i Y i e e A e e e o o

-~ does system pass first few parameters in registers?

88575 xx = f1 ; -- reference to first formal float parameter
55576 XX = ;;-:-- -:-;;feren;;-;;_;;;;;;_;;;;;I—;I;at parameter
$5577 xx 1= £3 7 -- reference to third formal float parameter
55578 xx i £4 ; - reference to fourth formal float parameter
55579 xx 1= £5 ; - reference to f1fth formal float parameter
53580 xx 1= £6 ; - reference to alxth formal fleat parameter
$9581 xx 1= £7 ; - reference te seventh formal float parameter
55582 xx e £8 ; - reference to elghth formal float parameter
55583 xx = £ ; - reference to ninth formal float parameter

Test Execution Bar Similar
Name Time Chart Groups
35127 5.52 ARARNR AN AR NN 1

55124 11‘10 LA RS SRRd RS sZERARSER RS S I

53126 11‘20 RERNERRAR R RARANR AN R AN G ANT RN SR hN i
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Individu. 1 Test Descriptions

PROCEDURE dry_martini
( base » spirit = gin ;
how 1 style = on_the_rocks H
' with_a : trimming := olive ) IS
BEGIN

’ martini { base, how, with_a ) ;
END dry _martini ;
s5124 dry martini ; -- Call local procedure with 3 default parameters,
-~ omitting all parameters on zail.
ss125 dry_martini ( gin , on_the_rocks , olive ) ;
~- Call local procedure with 3 default parameters,
-- specify all parameters on call.
85126 dry martini ( how => straight_up ) ;
-~ Call local procedure with 3 default parameters,
i -- specify second parameter (by name) on call.

85127 martini ( gin , on_the_rocks , oclive ) :
\ -~ Lower level procedure that ssl24-ssi26 call on.

Subprogram Calls: With 0..3 Parameters

Test Execution Bar Similar
Name Time Chart Groups
8536 2.30 ol }

8837 5.97 ERKARE N KRNI R AN RN |

5338 9_39 L E2 2222222222232 2232 24 i
53539 13.00 AR AR R AR AR R IEA RN NI R RNXNIN NS !

5836 procl ;
-~ simple procedure with no parameterc; call to library scope
=-=- procedure : body is null.

s837 procl ( xx ) ;
~-~ simple procedure with one IN OUT floating point parameter,
~- declared in external library unit : body is null.

i
! ss38 proc2 ( xx , yy ) ;
! -~ simple procedure with two IN OUT floating point parameters,
! -- declared in external library unit : body is null.
ss39 proc3 ( xx , yy , 22 ) ;
) -~ simple procedure with three IN OUT floating point parameters,
-~ declared in external library unit : body is null.

PIWG Test Resuits:

Configuration 1, PIWG 12/12/87 Release, Test P000005, P000010-P000013.

CMU/SEI-92-TR-32




vads ada/optimize=4{/errors=(listing,output) ‘File Name’

Test Name: PO00O0S Class Name: Procedure
CPU Time: 2.3 microseconds
Wall Time: 2.3 microseconds. Iteration Count: 2048

Test Description:

Procedure call and return time measurement

The procedure is in a separately compiled package
One parameter, in INTEGER

Test Name: PCO0010 Class Name: Procedure
CPU Time: 8.6 microseconds
Wall Time: 8.6 microseconds. Iteration Count: 1C24
Test Description:

Procedure call and return time measurement

Compare to PO0O00QS

10 parameters, in INTEGER

Test Name: P000011 Class Name: Procedure
CPU Time: 18.0 microseconds
Wall Time: 18.0 microseconds. Iteration Count: 512
Test Description:

Procedure call and return time measurement

Compare to P0OCO00O5, POO00O010

20 parameters, in INTEGER
Test Name: P000012 Class Name: Procedure
CPU Time: 11.3 microseconds
Wall Time: 11.3 microseconds. Iteration Count: 512

Test Description:

Procedure call and return time measurement

Compare with P000010 ( discrete vs composite parameters )
10 paramaters, in MY _RECORD a three component record

Test Name: pP00C0O013 Class Name: Procedure
CPU Time: 22.1 microseconds
Wall Time: 22.1 microseconds. Iteration Count: 512

Test Description:

Procedure call and return time measurement
twenty composite ’in’ parameters

the composite type is a three component record

References

¢ none
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2.12 Optimization Options

Question: What are the effects of different optimization ievels?

Summary: The VADS compiler provides 10 optimization levels, from 0 to 9. The default value is 4. For
the tested cases, higher levels of optimization provide only limited improvements in execution
performance, at the cost of increased compilation time. Optimization may be deactivated selectively tor
parts of programs.

Discusslon: The Ada language standard provides program centrol of compiler optimizations by prag-
ma OPTIMIZE. The standard options are OPTIMIZE(SPACE) and OPTIMIZE{TIME). A compiler may
honar the pragma or not, and can provide additional optimization options.

In deciding how to set optimization levels, the programmer should consider the following questions:

® How do optimization levels affect execution speed?
* How do optimization levels change program size?

® Does optimization cause any undesirable side effects, such as moving variables that
require 2 fixed location in memory?

* What is the ccst {or overhead) associated with various optimization levels?

The tested compiler does not honor pragma OPTIMIZE. The compiler provides 10 levels of optimiza-
tion, applied by a compiler command line switch, which applies increasing numbers of optimizations and
performs additional passes through the code {Observation 1 on page 100).

Since the optimization of individual code segments depends heavily on that code’s exact syntax, it is
impossible 1o make a general statement about the increase in of performance for Ada programs. How-
ever, Observation 2 on page 102 shows the effects of increasing execution time on the PIWG B tests,
a set of application programs. This illustrates that the improvement in execution speed trails off above
optimization level 3.

No information on program size is provided as part of this report.

While both the AES and ACEC provide extensive tests to demonstrate which optimizations are per-
formed, there is no correlation between the use of specific optimizations and potentially harmiul side
effects due to optimization. As can be seen in Figure 2-4 on page 103, the PIWG Tests BOC0001A and
B failed when the optimization level was set to 4 or higher. The reason for this failure is not known. In
another example, programs that control peripherals through successive writes of constant values to
specified memory locations may give the appearance code, which an optimizer can remove from the
program. Observation 3 o page 104 provides a listing of tests for specific optimizations. The Verdix
documentation indicates that optimization can be deactivated selectively for packages, subprograms,
and objects (Observation 1 on page 100).

No information on compiler timing or size for the compiler was collected for this report.
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Contiguration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 tioating-point co-processor; 32Kb SRAM; 64Kb zero-watit-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiller: Verdix Ada Development System (VADS} VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: Verdix documentation describes available optimizations. Note that pragma OPTIMIZE
is not effective, but the level of optimization can be set by a command line option, and that optimization
can be selectively disabled for individual subprograms, packages, and named objects.

Several portions of the Verdix documentation are relevant:
VADS Programmer's Guide, PG F-4:

pragma OPTIMIZE
is recognized by the implementation, but has no effect in the cur-
rent release...

pragma OPTIMIZE_CODE(OFF|ON)
specifies whether the code shouid be optimized (ON) by the com-
piler or not (OFF). it can be used in any subprogram. When OFF
is specified, the compiler generates unoptimized code. The detautt
is OFF.

Optimization can be selectively suppressed using this pragma at
the subprogram level. Inline subprograms are optimized even if
they have pragma OPTIMZE_CODE(CFF) unless the caller also
has pragma OPTIMIZE_CODE(QFF).

VADS Programmer's Guide, PG F-7:

pragma VOLATILE(object)
guarantees that loads and stores to the named object will be per-
formed as expected after optimization.
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VADS User's Guide, UG 4-4;

The Verdix optimizer perfarms most classical code optimizations
and several that are specific to Ada:

® Code straightening
* Constant folding, copy propagation and strength reduction
* Redundant branch and range check elimination

* Common subexpression elimination including elimination of
common expressions from the alternatives of a branch or case
statement

¢ Hoistings of loop invariant computations and range checks
* Strength reduction of index computations within a loop

¢ | oop induction variables for array indexing within a loop

® Range propagation for elimination of constraint checking

* Limitation of assignment 1o unused local variables

* Address simplification

In addition, the following VADS compiler features relate to the
runtime performance of the generated code:

® Local scalar and access variables automatically aliocated in
registers

* Loop variables allocated in registers

® Parameters passed in registers

¢ Graph coloring register allocation scheme
® Code generation for math coprocessors

* Target specific peephole optimization

pragma OPTIMIZE_CODE(ON|OFF) can suppress of re-enable optimiza-
tion for a specific subprogram or package.

pragma VOLATILE(object_name) guarantees that references to the
named object will not be optimized away.

VADS User Guide, UG 8-22;

/OPTIMIZE{=number]invoke the code optimizer (OPTIM3). An optional
digit provides the level of optimization. /OPTIMIZE=4 is the de-
fault.

{OPTIMIZE no digit, full optimization
{OPTIMIZE=0 prevents optimization
{OPTIMIZE=1 no hoisting

/{OPTIMIZE=2 no hoisting but more passes
{OPTIMIZE=3 no hoisting but even more passes
{CPTIMIZE=4 hoisting from loops
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/OPTIMIZE=5
/OPTIMIZE=6
/OPTIMIZE=7
/OPTIMIZE=8
/OPTIMIZE=9

hoisting from loops but more passes

hoisting from loops with maximum passes
hoisting from loops and branches

hoisting from loops and branches, more passes

hoisting from loops and branches, maximum
passes

Hoisting from branches (and cases alternatives) can be slow and does
not always provide significant performance gains so it can be sup-

pressed.

Observation 2: The PIWG “B” tests were run for each optimization level provided by the Verdix

compiler. The results are graphed below.

PIWG Test Results:

Configuration 1, PIWG 12/12/87 Release, Tests B0O00001-B000004, for optimization leve! 0-9 (see aiso

Observation 1).

Table 2: Execution Times (in Seconds) for PIWG B Tests at Various
Optimization Levels

Opt | Opt [Opt | Opt [ Opt | Opt { Opt | Opt | Opt. | Opt | Opt.
PIWG Test o2 1 2 3 4 5 6 7 8 9 9

clP| ch|ch|cCh|{Ch|Ch|Ch|Ch]|Ch]| Ch|No®
BODOOO1A | 468 ]300 [28.7 |287 1 1 1 1 1 1  l202
BOO0001B | 369 | 232 | 223 | 222 22.9
BOOODO2A | 423 | 26.7 | 247 | 247 | 252 | 250 | 250 | 253 | 250 | 25.2 | 25.0
BO0O0002B | 355 | 21.0 | 195 | 195 | 199 | 19.7 | 19.7 | 199 | 197 | 199 | 19.7
BOOODO3A | 481 | 317 | 29.6 | 295 | 209 | 299 | 290 | 299 | 299 | 209 | 29.9
BOOD003B | 411 | 257 | 241 | 24.0 | 24.4 | 245 | 245 | 245 | 245 | 244 | 24.4
BOOO0D4A | 463 | 28.2 | 250 | 250 | 26.6 | 264 | 264 | 26.6 | 26.4 | 26.6 | 26.4
BO00004B | 35.7 | 20.4 | 19.0 | 19.0 | 19.6 | 19.4 | 194 | 19.6 | 19.4 | 196 | 19.4

a Opt.=optimization level selected for the Verdix compiler.
b Ch=run-time checking enabled.
¢ No=no run-time checking.
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Figure 2-4: Graph of PIWG B Test Results
Notes:

® The Y axis displays the optimization levels provided by the Verdix compiler, from 0
(no optimization) to 9 (full optimization). From left to right, the first 10 observations
were made with run-time checking on, while the final observation has checking
turned off.

* The X axis shows the PIWG B test name (abbreviated). Each test was attempted 11
times, for various optimization levels. Note the B01A and 8018 tests failed for some
optimization levels.

® The Z axis shows the executiontime, normalized by test. For eachtest, the execution
time for optimization level 0 was taken as the value 1.0, with the other results in the
series shown in proportion. This displays all test series to the same scale, showing
how optimization affected execution times for the PIWG B tests. /f actual execution
times are needed, consult the table above.

* PIWG Test B000001 failed when the optimization level was set to 4 or above.
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Observation 3: Numerous tests for individual optimizations are made by both the ACEC and AES test
suites.

AES Test Results:
Observation 1, DIY_AES Version 2.0, Group O, Tests TO01-TO04, TO08, TO10-TO14, TO16, TO18-
T020.

Note that tests appearing in other portions of this report are not reproduced here. See, for example, ar-
ray efficiency, check suppression and generic procedures.

0. Group O - Optimization Tests
0.1. TOOl

This test checks optimizations involving value
propagation.

Value propagation is the replacement, at compile time, of
a reference to a variable by its known value. The code
size of sections of code which permitted value
propagation was compared with an equivalent section where
propagation could not be performed. The following results
were obtained.

Simple propagation optimization is performed for
integers.

Propagation of values through if statements does occcur
for integers.

Chains of propagation of values (i.e. remembering the
contents of variables as a result of assigning other
variables with known values to them) does occur for
integers.

Simple propagation optimization is performed for floats.

Propagation of values through if statements does occur
for flcats.

Chains of propagation of values (i.e. remembering the
contents of variables as a result of assigning other
variables with known values to them) does occur for
floats.

©.2. TOO02

This test checks for common subexpression elimination, in
particular, examining whether common subexpressions are
only evaluated once.

Two common subexpressions involving integers are not
recognised as being common.

Three common subexpressions involving integers are not
recognised as being common.

Two common subexpressions involving one~dimensional array
addressing for integers are recognised as being common
and only evaluated once.
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0.10.

Two common subexpressions involving two-dimensional array
addressing for integers are recognised as being common
and only evaluated once.

Two common subexpressions involving floats are not
recognised as keing commen.

Three common subexpressions involving floats are
recognised as being common and only evaluated once.

Two common subexpressions involving one-dimensiornal array
addressing for floats are recognised as being common and
only performed once.

Three common subexpressions involving two-dimensionai
array addressing for floats are recognised as being
common and only performed once.

TOO3

This test checks loop optimizations.

Some loop invariant array addressing expressions are
hoisted out of the body of a loop.

Some loop invariant statements are hoisted out of the
body of a loop.

Simple loops iterating twice are not unrolled.

Simple loops iterating three times are not unrolled.
Constraint checks are not removed from the body of a
loop.

TO04

This test examines the use of registers for variables.
The test was performed by comparing code sizes of groups
of statements which allowed scope for some (but not all)
variables to be allocated to registers. If registers were
used, some of the statements would yield shorter code
sequences. It was found that approximately 4 registers
were used to hold variables.

TO08

This test determines whether or not only those
subprograms which are referenced are loaded.

The test measures the size of code loaded, to see if
unreferenced subprograms are in fact loaded. Pragma
OPTIMIZE (SPACE) was set and it was noted that
unreferenced subprograms are not loaded.

TO10

This test checks a variety of subexpression evaluation
optimizations, in particular constant folding.
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0.11.

Constant folding (performing compile-time arithmetic on
constants) and special-case expression evaluation {e.g.
multiplying by zero or one) was tested under a variety of
conditions. Code sizes obtained were compared with
control versions which inhibited the optimizations.
Pragma OPTIMIZE (SPACE) was used.

Simple constant folding of adjacent constants is
performed for integers.

Constant folding after re-arrangement (i.e. the compiler
rearranges the expression to bring LwWO constants
together) is not performed for integers.

Complex constant folding (e.g. evaluating bracketed
compile-time known expressions) 1is not performed for
integers.

Simple constant folding, involving propagation of
remembered values from elsewhere 1in the code, is not
performed for integers.

Complex constant folding, involving propagation of
remembered values from elsewhere in the code, is
performed for integers.

Special-case expression evaluation is performed for
integers.

Simple constant folding of adjacent constants is
performed for floats.

Constant folding after re-arrangement (i.e. the compiler
rearranges the expression to bring two constants
together) is not performed for floats.

Complex constant folding (e.g. evaluating bracketed
compile~time known expressions) is not performed for
floats.

Simple constant folding, invelving propagation of
remembered values from elsewhere in the code, 1is not
performed for floats.

Complex constant folding, invelving propagation of
remembered values from elsewhere in the code, is not
performed for floats.

Special-case expression evaluation 1is performed for
floats.

TO11

This test performs checks on the suppression of redundant
runtime checks.

Timing tests were run to compare code where runtime
checks are required with similar code where the checks
are redundant. Pragma OPTIMIZE (TIME) was set.

The index check when indexing arrays is automatically
eliminated when not required when the index subtype is a
subtype of the array range.
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0.12.

0.13.

0.14.

0.18.

Constraint checks on indexing arrays are not eliminated
when the index value is known by propagation of the value
of the index.

The range check when assigning objects of different
subtypes is automatically eliminated when not required
because one object is a subtype of the object being
assigned to.

TOLl2

This test examines the effectiveness of register
allocation and invelves expressions requiring storage of
intermediate results.

Test failed. No TEST.TST

TO13

This test checks whether or not only referenced subunits
are loaded. The test measures the size of code loaded to
see if unreferenced subunits are in fact loaded. Pragma
OPTIMIZE (SPACE) was set.

Unreferenced subunits are not loaded.

TO1l4

This test determines whether the compiler can recognise
and remove unreachable and redundant code.

The compiler did not generate unreachable code in a
function where extra statements followed the ’‘return’
statement.

The compiler did generate redundant code in the case of
an 'if!’ statement where the result of the condition was
known at compile-time.

TOl6

This test determines whether the compiler can recognise
code which will definitely cause a predefined exception
and replace it with exception raising ccde.

The compiler did not recognise and replace with exception
ralsing code, statements which would definitely cause a
NUMERIC_ERROR.

The compiler did recognise and replace with exception
raising c¢ocde, statements which would definitely cause a
CONSTRAINT_ERROR.

TO1l8

The aim of this test is to determine if the compiler can
recognise an accept statement with a null body and avoid
context switching in this case, thus making a significant
time saving.
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Test failed. No TEST.TST

. TO18

The aim of this test is to help determine if there are
any special optimizations when the compiler recognises a
passive task, ie. turning the task inte a moniter
package. In this case the passive task simply protects a
shared variable.

Test failed. Malfunction in Test Harness
Exception in Unattended mede

0.20. TO20

The aim of this test is to help determine if there are
any special optimizations when the compiler recognises a
passive task, ie. turning the task inte a moniter
package. In this case the passive task handles a buffer
similar to a MASCOT channel.

Test failed. Malfunction in Test Harness
Exception in Unattended mode

ACEC Test Results:
Observation 1, ACEC Release 2.0, SSA Report “Optimizations™:

e “Algebraic Simplification : Array of Integer” [Tests ss432 and ss433], 1ge 112

¢ “Algebraic Simplification

® “Algebraic Simplification :
¢ “Algebraic Simplification :
® “Algebraic Simpilification :
® “Algebraic Simplification :
® “Algebraic Simplification :
® “Algebraic Simplification :
¢ “Algebraic Simplification :
® “Algebraic Simplification :
¢ “Algebraic Simplification :
¢ “Algebraic Simplification :
: Integer” [Tests ss48 and ss11], page 115
: Integer” [Tests ss49 and ss11], page 115
: Integer” [Tests ss50 and ss7], page 115

e “Algebraic Simplification
* “Algebraic Simplification
e “Algebraic Simplification

® “Algebraic Simplification :
® “Algebraic Simpilification :
® “Algebraic Simplification :

: Array of Integer” [Tests ss434 and ss435], page 113

Array of integer” [Tests 55436 and ss437], page 113
Boolean™ [Tests ss83 and ss82], page 113
Boolean" [Tests ss85 and ss86], page 113

Boolean™ [Tests ss319 and ss320], page 114
Boolean” [Tests ss321 and ss322), page 114
Integer” [Tests ss51 and ss11], page 114

integer” [Tests ss44 and ss0], page 114

Integer” [Tests ss52 and ss11], page 114

Integer” {Tests ss47 and ss11], page 115

Integer” [Tests ss560 and ss561], page 115

Integer” [Tests ss9 and ss43], page 116
Floating Point” [Tests ss64 and ss3], page 116
Floating Point” [Tests ss61 and ss3], page 116

108

CMU/SEI-92-TR-32




® “Algebraic Simplification : Floating Point” [Tests ss62 and ss3}, page 116
* “Algebraic Simplification : Floating Point” [Tests ss63 and ss3), page 116
e “Algebraic Simplitication : Floating Point” [Tests ss65 and ss1}, page 117
e “Algebraic Simplification : Boolean NOT, NOT NOT,” page 117

® “Range Constraint Check,” page 117

¢ “Bounds Checking” [suppressiorvnon-suppression!, page 117

¢ “Dubious Constant Propagation” [Tests ss314 and ss315], page 118

¢ “Dubious Constant Propagation” [Tests ss316 and ss317], page 118

* “Dubious Constant Propagation” [Tests ss318 and ss315], page 118

® “Constant Propagation” [Tests ss366 and ss7], page 119

® “Constant Propagation” [Tests ss540 and ss7], page 119

* “Constant Propagation” [Tests ss556 and ss7], page 119

¢ “Common Subexpression Elimination” [Tests ss210 and ss211}, page 120
¢ “Common Subexpression Elimination” [Tests ss210 and ss643], page 120
* “Common Subexpression Elimination” [Tests ss211 and $s530], page 120
* “Common Subexpression Elimination” [Tests ss211 and ss533], page 120
¢ “Common Subexpression Elimination” [Tests ss644 and ss84], page 121
® “Boolean Variable Elimination,” page 121

* “Dead Code Elimination” [Tests ss56 and ss11}, page 121

* “Dead Code Elimination” [Tests ss68 and ss3}, page 121

¢ “Dead Code Elimination™ [Tests ss71 and ss0], page 122

* “Dead Code Elimination” [Tests ss225 and ss7], page 122

* “Dead Code Elimination” [Tests ss226 and ss0], page 122

* “Dead Code Elimination” [Tests ss649 and ss1}], page 122

® “Dead Code Elimination” [Tests ss651 and ss11], page 123

¢ “Dead Code Elimination” [Tests ss93 and ss0], page 123

* “Dead Code Elimination” [Tests ss195 and ss0], page 123

* “Dead Code Elimination” {Tests ss261 and ss0], page 123

* “Dead Code Elimination” [Tests ss26 and ss0}, page 124

® "Dead Code Elimination” [Tests $s376 and ss36}, page 124

® “Dead Code Elimination” [Tests ss377 and ss36], page 124

® “Dead Code Elimination” [Tests ss543 and ss0], page 124

¢ “Dead Code Elimination™ [Tests ss544 and ss0], page 125

* “Dead Code Elimination” {Tests ss751 and ss0), page 125

* “Dead Variable Elimination,” page 125

® “Order Of Evaluation Tests” [Tests ss413 and ss414], page 126

* “Order Of Evaluation Tests” [Tests 5415 and ss416], page 126
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e “Data Flow" [Tests $s427 and ss11], page 127

e “Data Flow" [Tests ss504 and ss0}, page 127

¢ “Data Flow" [Tests ss505 and ss0], page 127

¢ “Data Flow" [Tests ss558 and ss559), page 127

¢ “Data Flow” [Tests ss756 and ss7], page 128

* “Data Flow" [Tests ss753, ss754 and ss755], page 128

* “Folding” [Tests ss40 and ss11], page 129

e “Folding” [Tests ss41 and ss7], page 129

* “Folding” [Tests ss42 and ss7], page 129

* “Folding" [Tests ss216 and ss1], page 129

* “Folding” [Tests ss217 and ss7], page 130

* “Folding” [Tests ss219 and ss1], page 130

* “Folding” [Tests s§s303 and ss302], page 130

* “Folding” [Tests ss304 and ss307], page 130

* “Folding” [Tests ss305 and ss307], page 131

* “Folding" [Tests $s532 and ss528], page 131

¢ “Folding” [Tests ss532 and ss1}, page 131

¢ “Folding" [Tests ss2 and ss1], page 131

* “Folding” [Tests ss8 and ss7), page 132

® “Folding” [Tests ss54 and ss53}, page 132

* “Folding” [Tests ss55 and ss11), page 132

® “Folding” [Tests ss60 and ss1}], page 132

® “Folding” [Tests ss189 and ss190], page 133

¢ “Fo.dable Expressions” [Tests ss587 and $s594], page 133

* “Foldable Expressions” [Tests ss588 and ss594], page 133

* “Foldable Expressions” [Tests ss589 and ss594), page 133

® “Foldable Expressions” [Tests $s590 and ss594], page 134

® “Foldable Expressions” [Tests ss591 and ss594], page 134

® “Foldable Expressions” [Tests ss592 and ss594], page 134

* “Foldable Expressions” [Tests ss593 and ss594], page 134

* “Foldable Expressions” [Tests ss595 and 5594}, page 135

¢ “Foldable Boolean Expressions” [Tests ss227 and ss84], page 135
* “Foldable Boolean Expressions” [Tests 55230 and ss84], page 135
* “Foldable Boolean Expressions” [Tests ss231 and ss84], page 135
* “Foldable Boolean Expressions” [Tests §s232 and ss84], page 136
¢ “Foldable Boolean Expressions” [Tests ss239 and ss0}, page 136

* “Folding in Inline Function” [ss142, ss563, 55564, and ss565], page 136
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CMU/SEI-92-TR-32




e “Folding in Inline Function” [Tests ss563 and ss7), page 137
e “Machine Idioms” [Tests ss29 and ss3}, page 137

¢ “Machine ldioms” [Tests ss30 and ss11], page 137

¢ “Machine Idioms” [Tests ss40 and ss11], page 137

* “Machine Idioms" [Tests ss45 and ss7], page 138

® “Machine Idioms” [Tests ss52 and ss9], page 138

¢ “Machine Idioms" [Tests ss59 and ss3), page 138

¢ “Machine Idioms” [Tests ss115 and ss114}, page 138

® “Machine Idioms” [Tests ss128 and ss129], page 138

¢ “Machine Idioms” [Tests ss196 and s5201], page 139

e “Machine Idioms” [Tests ss198 and s5201], page 139

® “Machine Idioms" [Tests ss201 and ss202], page 139

® “Machine Idioms” [Tests ss197 and $s203), page 139

* “Machine Idioms” [Tests ss199 and 5200}, page 140

¢ “Machine ldioms” [Tests ss204 and s5200], page 140

e “Machine Idioms” [Tests ss207 and $5208], page 140

¢ “Machine idioms” [Tests ss323 and s5324], page 141

* “Machine ldioms"” [Tests ss215 and ss11], page 141

* “Machine Idioms” [Tests ss503 and ss0}, page 141

* “Machine idioms™ [Tests ss205 and ss206], page 141

¢ “Jump Tracing” [Tests $5250 and ss0}, page 142

¢ “Jump Tracing” [Tests ss619 and ss0], page 142

® “Jump Tracing” [Tests $s620 and ss0}, page 142

® “Jump Tracing” [Tests §s26 and ss0], page 142

¢ “Jump Tracing” [Tests ss261 and ss0], page 143

* “Loop Fusion,” page 143

¢ “Loop Interchange”, page 143

¢ “ oop Unroliing, Test Elimination” [Tests s5541 and ss542x], page 144
* “L oop Unrolling, Test Elimination” [Tests s5542 and ss542x], page 144
¢ “Loop Unrolling” [Tests ss105 and ss642], page 145

* “Loop Unrolling” [ss3, s517, 5857, $5238, and ss240], page 145
 “{ oop Flattening: 2 Dimensional Arrays Of Real,” page 145
¢ “Loop Invariant Motion” [Tests ss212 and ss3}, page 146

* “Loop Invariant Motion™ [Tests ss429 and §s430], page 146
* “Loop Invariant Motion" [Tests ss536 and $s535], page 146
* “Loop Invariant Motion” [Tests ss752 and ss11], nage 147

¢ “FOR LOOP with NULL Body,” page 147
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® “Test Merging” [Tests ss178 and ss179), page 147

® “Tast Merging” [Tests ss440 and ss441], page 148

* “Respect for Parentheses Test,” page 148

* “Superfluous Parentheses” [Tests ss389 and ss3}, page 149

® “Superfluous Parentheses” [Tests ss391 and ss390], page 149
¢ “Superfiuous Parentheses" [Tests ss392 and ss390], page 149
s “Superfluous Parentheses” [Tests ss393 and ss11! page 14¢
s “Superfluous Parentheses” [Tests s¢395 and sc_24), page 149
* “Superfluous Parentheses” [Tests $s396 and ss394], page 150

® “Order of Evaluation & Register Aliocation Test for Parameters”
[Tests ss546 and ss547], page 150

* “Order of Evaluation & Register Allocation Test for Parameters™
[Tests ss548 and ss549], page 150

* “Order of Evaluation & Register Allocation Test for Parameters”
[Tests $s550 and ss551}], page 151

* “Register Allocation with Call on External Procedure,” page 151
® “Register Allocation” [Tests ss262 and ss263], page 152

* “Register Allocation” [Tests ss264 and $5266], page 152

* “Register Allocation” [Tests ss265 and $$266], page 152

¢ “Relational Expression OR vs OR ELSE,” page 152

¢ “|IF Statement - Integer, Float - AND vs AND THEN,” page 153

¢ “IF Statement - Integer Relations, Simplifications” [Tests $5228 and §s229], page
153

® “IF Statement - integer Relations, Simplifications” [Tests ss231 and ss84], page 154
¢ “Strength Reduction” [Tests ss213 and ss422], page 154

¢ “Strength Reduction” [Tests ss423 and $s424], page 154

* “Strength Reduction” [Tests ss425 and ss426], page 155

* “Strength Reduction” Tests ss15 and ss5], page 155

¢ “Strength Reduction” [Tests ss188 and s5202}, page 155

* “Strength Reduction” [Tests $s279 and s$s273], page 155

® “Test Swapping,” page 156

Time : s8432 | 20.9 ) vs 15433 ( 18.2) nostatistics
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1= el (d):
r= el(5);

Algebraic Simplification : Array of Integer

Description Optirmized?
Time : ss434 ( 13.8 ) vs ss5435 ¢ 22.4 ) yes

Algebraic Simplification : Array of Integer

Description Optimized?
Time : 58436 ( 13.9 ) vs 88437 ¢ 15.4 ) yes
58436 => a3 ;=b / c / d / 2; +
83437 => a :=b / (c *d *e); +
Algebraic simplification : Boolean
Description Optimized?
Time : ss83 ( 1.8 ) vs ss882 { 1.4) nostatistics
2883 => IF NOT ( 11 >= mm ) THEN ii := 1; END IF; -~ True,
5382 => IF 11 < mm THEN ii := 1; END IF; -~ True,
Algebraic Simplification : Boolean
Descripticn Optimized?
Time : s885 | 2.1 ) vs 8886 ( 1.7 ) rostatistics
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Algebraic Simplification : Boolean

Description Optimized?
Time 88319 { 1.8 ) vs 85320 ({ 1.8 yes
5319 => IF mm > 11 OR alse THEN {1 := 1; END IF;

55320 => IF mm > 11 OR ELSE False THEN ii := 1; END IF;

Description Optimized?
Time : 88321 ¢ 1.9 ) vs 83322 0.8 ) nostatistics
38321 => IF mm > 11 OR True THEN i1 := 1; END IF;

Algebraic Simplification : Integer

Description Optimized?
Time 5851 0.8 ) vs ssll ¢ 0.8 ) yes

3551 w=> ff = 1] ww 1,

ssll => kk := 11;

Algebraic Simplification : Integer
Description Optimized?
Time ; ss44 ( 0.0 ) vs s3s0 ¢ .0 ) yes
5344 => {i := {i + 0;
ss0 => NULL;
Algebraic Simplification : Integer
Description Optimized?
Time : 8852 ¢ 0.9 } vs ssll ( 0.8 ) nostatistics
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Algebraic Simplification : Integer

Description Optimized?
Time : ss47 ( 0.8 ) vs ss11 ¢ 0.8 ) yes
3347 => i := 11 * 1;
ssll => kk := 11;
Algebraic Simplification : Integer
Description Optimized?
Time : ss8560 ( 0.8 ) vs ss5el | 0.8 ) yes
33560 => i1 := -1 * 4§,
88561 => i s= -ii;
Algebraic Simplification : Integer
Description Optimized?
Time : ss48 ( 0.8 ) vs s8s1l ( 0.8 ) yes
8848 => ii := 11 / 1;
$81l => kk := 11;
Algebraic Simplification : Integer
Description Optimized?
Time : ss349 | 0.8 ) vs 33811 ( 0.8 ) yes
5849 => 1i := 11 * 0O;
8311 => kk := 11;
Algebraic Simplification : Integer
Description Opt imized?
Time : ss850 ( 0.8 ) vs ss7 ( 0.8 ) nostatistics
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Algebraic Simplification : Integer

89 => kk := 11 + mm;

Description Optimized?
: 8364 ( 0.8 ) vs ss3 { 0.8 ) nostatistics

Description Optimized?
Time : ss6l ( 0.8 ) vs 833 { 0.8 ) maybe
8861l => xx := yy * 1.0;
ss3 > XX im yy ;

Description Optimized?
: 8362 ( 0.8 ) va ss3 {( 0.8 ) no
$$62 => xx :=yy / 1.0;
ss3 => XX 1= yy ;

: 8363 { 0.8 ) vs s83 ( 0.8 ) nostatistics
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Algebraic Simplification : Floating Point

ssl => xx 3= 1.0;
Algebraic Simplification : Boolean NOT, NOT NOT
Test Execut »n Bar Similar
Name Tir Chart Groups
5872 0.89 XXX NRNIRANIRARE RN R AW NS i
8573 1.17 AN KRR RN AA A AN ENR AR ARSI RN A RANNR |
Individual Test Descriptions

8872 bool := NOT bool ;

-~ booclean operator NOT.

$s573 bool := NOT { NOT bool } ; =-- could be ncop
~- algebraic simplification; boolean NOT NOT.

i e o " 0 T WD - S A S S e ey Y T W P A e o R TR G o . o

Range Constraint Check

Test Execution Bar Similar

Name Time Chart Groups

ss128 2.51 AR AN R AR A RNRRRF RN R F NN RRE AR N ARN i

55255 2.51 [ 2R ISR 2223 222222222 |

58129 2.58 Y22 X222 SRS EZE S 22 22 1 |
Individual Test Descriptions

TYPE color 1S ( white, red, yellow, green, blue, brown, black ) ;

hue : color := yellow ;

85128 IF hue < black THEN hue := color’succ ( hue ) ; END IF ;
IF hue > white THEN hue := color’pred ( hue ) ; END IF ;
-~ uses 'SUCC and ‘PRED on enumerated type, no checking
ss129 IF ei < 6 THEN ei := ei + 1 ;
IF ei > 0 THEN ei := eif - 1 ; END IF ;
-- Same computations as in ssl28 on integers .

ol
=
o
(=]
]

88255 IF hue < black THEN hue := color’succ {( hue } ; END IF ;
IF hue > white THEN hue := color’pred ( hue ) ; END IF ;
-- uses ‘SUCC and ‘PRED on enumerated type, enabling range checking

Test Execution Bar Similar
Name Time Chart Groups
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55194 3.95 AR EAURNREC R RN R RN KA !
ss8175 5.97 AR R I AR AN NN AR AN RN KA RS EANARANNR T i

Individual Test Descriptions

TYPE a_type IS5 ARRAY ( 1..10 ) OF int;
a, bJC:a_type = {1, 2, 3, 4, 5, 6, 7, 8' 9, 10 )
minus_one : CONSTANT := -1 ;
d : ARRAY { minus_one..8 ) OF int := ( -1, 0, 1, 2, 3, 4, 5, 6, 7, 8) 7
53175 {4 := a (el ) +b (el ) +¢c (el ) +d (el ) ;

-- Reference to 4 arrays with overlapping static bounds

~- Can merge bounds checking.
TYPE a_type IS ARRAY ( int’ ( 1) .. int’ ( 10 ) } OF int ;
a, b, ¢ : a_type := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
minus_one : CONSTANT int := -1 ;
d : ARRAY ( minus_one..int’ ( g8 ) ) OF int :=

(-1, 0, 1, 2, 3, 4, 5, 6, 7, 8 ) ;

58184 1) = a (el ) + b (ei ) + c (ei ) +d (el ) ;

-- Reference to 4 arrays. This version suppresses subscript checking.

Description Optimized?
Time : 53314 ( 8.0 ) vs ss315 ( 1.5 nostatistics

58314 => xx := 1.00000001 ; bool := xx - 1.0 > 0.0 ;
-- test for constant propagation -- precise floating point
-~ literal (9 digits) which can be propagated into its
-~ following statements and folded.
-- the optimization into ss315 is dubious
85315 => xx := 1.0 ; bool := true ;
-- hand optimized (folded) version of ss314

Dubious Constant Propagation

Description Optimized?
Time : 838316 { 8.8 ) vs 88317 {( 1.4) nostatistics

$8316 => xx := 1.00000001 ; bool := xx - 1.0 > 0.0 ; xx := yy ;
-- this pair may yield different results than ss314, ss315
-- since 3s316 makes initial assignment to ‘xx’ dead and
-~ 80 may facilitate the ‘optimization’ into ss317
ss317 => bool := true ; =xx := yy ;
-~ hand optimized (folded) version of ss316

Description Optimized?

- e 8 T L s i o e o v o i e . T o A S i o Sk S . > A A O 0 B o o e e B e o Al o e o Yt
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Time : 53318 ( 1.0 ) vs 38315 1.5 yes

35318 => xx := 1.00000001 ; bool := 1.00000001 ~ 1.0 > 0.0 ;
-- use of literal expression could be folded

$3315 => xx 1= 1.0 ; bool := true ;

=- note, these 5 tests will detect dubicus constant

-- propagation of floating point values when there is a single
-~ precision float type of 6 or 7 digits (eg. 32 bits) and

-- a more precise type with at least 9 sc that the literal

-- expression 1.00000001-1.0 will yield value 1.0e-8 but when
-- stored into single precision variable will have value 0.0.
-- The optimization of propagating the long literal would be
-~ dnbious, although ‘% would be valid te prepagate the value
-~ of the literal rounded (or truncated as is systems normal
-~ procedure} to single precision.

Constant Propagation
Descriptior Optimized?
Time : 88366 ( 0.8 ) vs ss7 ( 0.8 ) nostatistics

ss366 ri := 1 ; ~- range check enabled
~- assign literal to variable with range constraints
-~ Optimization : folding {omit tests at execution time)

A e o o e 4 10 T - = - o " - s = P " - o = o =

ss7 kk := 1 ;
-~ Integer assignment, literal "1" to library scope variable.

Constant Propagation
Description Optimized?
Time : 88540 ( 0.8 ) vs ss7 {( 0.8) nostatistics

58540 xx = ( 1.0 + 2.0 ** ( -100 ) ) - 1.0 ;
-~ Literal floating point expression in assignment statement.
-- LRM does not require evaluation with rational package.
-~ Problem also tests precision of evaluation.

A i o Y e o = - - - — ——

857 kk =1 ;
-- Integer assignment, literal "1" to library scope variable.

Constant Propagation
Description Optimized?
Time : 54556 ( 1.6 ) vs 887 {( 0.8 ) nostatistics
88556 ii := 0 ;
ii 1= 1i + 1 ; ~- constant propagation?
~-- Integer constant propagation. Assign zero to a variable,
-- increment variable in next statement.
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ss?7 kk =1 ;
~- Integer assignment, literal *1" to library scope variable.

Common Subexpression Elimination

A e e e S ol e o AL e e 8 2 e L i Sk . o T T T e o e o s 0 i g e o B e o

Description Optimized?
Time : ss210 { 12.0 ) vs ss211 ( 16.0 ) yes

88210 => xx = { yy * 2z - 0.125 ) / (yy * 2z );

Common Subexpression Elimination

0 el e e o T e e - " " "> % " T " T W > > = o = " o = o o = = T -

Description Optimized?

expression yy*zz is common in ss210 and yy*zz and zz*yy are
common in ss643

e e s . o A i o kS G4 . R 4t T o A i ik 2 A o —

88270 => xx = (yy * zz - 0,125 ) / {( yy * zz );

Common Subexpression Elimination

Description Optimized?
Time : ss211 ( 16.0 ) vs 88530 ¢ 15.9 ) nostatistics

in 83530, x is a local variable not visible in handler

85211 => xx 1= yy * zz ; xx := { xx - 0.125 } / xx ;

88530 => x 1= yy * 2z ; xx = ( x - 0.125 ) / x:
Common Subexpression Elimination

Description Optimized?
Time : ss211 ( 16.0 ) vs 58533 ( 15.9 ) nostatistics
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Common Subexpression Elimination

Description Optimized?
Time : ss5644 ( 1.1 ) vs ss84 ( 0.8 ) nostatistics
ss84 IF 11 > mm THEN die; END IF; -- False
85644
IF 11 = mm AND 11 = yam AND 11 = mm AND 11 = mm AND 1l = mm
AND mm = 11 AND mm = 11 AND mm = 11 AND mm = 11 AND mm = 11
THEN
ale;y
END IF;

Boolean Variable Elimination

Description Optimized?
Time : 53176 ( 4.2 ) vs 88177 2.9 ) nostatistics

ss176 bool := 11 /= mm ;
IF bool THEN ii:= 0
ELSE ii:= 1
END IF ;
bocl := True ;
~- the standardization of 11 /= mm and assignment tc bool could
-~ be eliminated. If so, ss5176 should have same time as ss177

~ e

88177 IF 11 /= mm THEN {i := 0 ;
ELSE {i := 1 ;
END IF ;

bool := True ;
== Problem has had boolean variable elimination performed by hand.

Description Optimized?
Time : ss56 ( 1.6 ) vs ssll {( 0.8 ) nostatistics

ss56 ii := 11 ; 1ii := mm ; -~ first assignment is dead
-- Optimization test for dead sssignment elimination on integers.

Dead Code Elimination
Description Optimized?
Time : 3368 ( 1.6 ) vs 553 ( 0.8 ) no

CMU/SEI-92-TR-32 121




8868 xx := yy ; xx := zz ; -- first assignment is dead
~-- dead assignment elimination; floating point variakle

Dead Code Elimination
Description Optimized?
Time : ss71 ( 0.0 ) vs ss0 ( 0.0 ) yes
5871 xx := xx ;
-~ Assign float variable to itself.
ss0 NULL ;
Dead Code Elimination
Description Optimized?
Time : s$s3225 ( 4.9 ) vs ss7 ( 0.8) ne
35225 FOR i IN int’(1)..int* (5)
Loop il = 1 ;
END LOOP ;
i1 =0 ;
~-- dead assignments within loop, killed by assignment after exit.
ssT kk = 1 ;
Dead Code Elimination
Description Optimized?
Time : 85226 ({ 0.0 ) vs 880 ( 0.0 ) yes

38226 DECLARE

xyz : real ;
BEGIN

Xyz = yy “ 2z ;
END ;

~- dead assignments within a block. Variable assigned to
~-- local which is not referenced before block is exited.

838649 IF 11 = mm
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THEN
Xx =2z * {one / 2.0 ) ; ~- dead
ELSE
XX = zz * ( one * 0,5 ) ; -~ dead
END IF
xx := 1.0 ; -~ this kills both assignments in the {f

Dead Code Elimination

Description Optimized?
Time : s8651 ¢ 9.0 ) vs 8511 | 0.8 ) nostatistics

53651 FOR 1 IN 1..10
LOOP
kk 1= 1 ;
END LOOP ;
ii := kk ;
-~ Assign to variable within a loop, after loop exit,
~~ making all assignments within the loop dead.

ssll kk := 11 ;
Dead Code Elimination

Description Optimized?
Time : 3393 { 0.0 ) vs ss0 ( 0.0) yes

s593 IF False THEN die ; END IF ;
-- redundant code elimination - could be noop

330 NULL
Dead Code Elimination

Description Optimized?
Time : 35195 ( 0.0 ) vs ss0 ( 0.0} yes

ssl NULL
|
Dead Code Elimination
Description Optimized?
Time : ss261 ( 0.0 ) vs ss0 ¢ 0.0} yes
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ss261 GOTO Label ; << Label>> NULL ;
~- Peephole optimizer should translate into a NULL.

e e S i A e D s Y N A A D R OB e VD U 408 T 400 kS T A B B Y e 4 A o

ss0 NULL ;

Time : 3526 { 0.3 ) vs ss0 ( 0.0) nostatistics

ss26 GOTO 12 ;
<<1l1>> die ;
GOTO 11 ;
<<12>> NULL ;
-- Language feature test, GOTO.

Time : ss8376 ( 2.2 ) vs s8s36 {( 2.3) yes

38376 LOOP procQ ; EXIT ; END LOOP ;

-~ example with simplifiable contreol flow

-~ redundant code elimination - (omit LOOP)

s836 proc0 ;

-- call to library scope procedure -~ body is null.

Description Optimized?
Time : 58377 {( 2.4 ) vs ss36 ( 2.3 no
ss377 LOOP
procl ;
EXIT ;
xx := e3 ( ei, ej, ek ) ;
END LOOP ;

-- assignment is unreachable, LOOP EXIT code is superfluous

ss36 procl ;
~~ call toc library scope procedure -- body is null.

Dead Code Elimination

Description Optimized?
Time : 88543 { G.3 ) vs ss0 { 0.0 nostatistics
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835543 DECLARE -«- should be noop
BEGIN
NULL ; ~- null body, no way to enter the handler
EXCEPTION
WHEN OTHERS =>
die ; -~ no re~raise in handler
END ;
-- Declare block with null body and exception handler,
-~ which is unreachable and superfluous.
-- Optimization : unreachable cade elimination
ss0 null;
-- Language feature test, null statement

Dead Code Elimination

Description Optimized?
! Time : ss544 ( 0.0 ) vs ss0 ( 0.0 ) yes
| 2 0 Y S 2 8 e 7 St i 7 - e o ot 2 e T e A e P A o o o 2t O
85544 DECLARE -- should be noop
BEGIN
NULL ;
END ;
~- null body check for block overhead

ss0 npull;
~- Language feature test, null statement

Dead Code Elimination
Description Optimized?
Time : 85751 {( 0.0 ) vs ss0 { 0.0 yes
85751 IF False
THEN
ii = 33 ;

END IF ; -- unreachable assignment
-- Optimization test: omission of an unreachable assignment.

ss® null;
-- Language feature test, null statement

- e 1y = -’ e i o " - " = i - —

Dead Variable Elimination

Test Execution Bar Similar

Name Time Chart Groups

58639 8.76 I3 228222 222 ST R ] \

55640 11.90 LA AR AR AR AR A e 22 X2 f

s5638 12.80 KHHRANARA NI R RN RAF AR AN RN RN RN WK i

Individual Test Descriptions
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53638 DECLARE
state : int ; -- all are live due to handler

BEGIN
state := ]; procO;
state := 2; procO;
state := 3; proc@;
state := 4; procO;
EXCEPTION

WHEN OTHERS =>
procil ( state ) ;
die;
END;
-- comparison to ss639 to check for dead variable elimination.
55639 DECLARE
state : int; ~-- assignments are dead due to no handler

BEGIN
state = }; proc0;
state := 2; proc0;
state := 3; procl;
state := 4; proc0;
END;
-- dead variable elimination. State never referenced.
55640 DECLARE -- assignments to global, force live
BEGIN
ii := 1; procO0;
ii = 2; proc0;
il = 3; proc;
ii := 4; procl;
END ;
-~ comparison for dead variable elimination. ii is global
Order Of Evaluation Tests
Description Optimized?
Time : 8413 ( 12.7 ) vs ss4l14 ! 12.9) yes

83413 xx = 8gn ( yy ) + 1.7 ;
-~ order of evaluation test

33414 xx = 1.7 + sgn ( yy ) :

-- order of evaluation test. A simple left-to-right order of
-- evaluation would load the literal, save value when it calls
-~ on the function, and restore it after the function call.

Order Of Evaluation Tests

Description Optimized?
Time : 33415 ( 11.1 ) vs ss4lé |( 11.5 ) yes

-~ computes the square root of 2.0
-~ statement is a Newton iteration

xx := 1.,414159 ; -~ this makes each iteration essentially
-~ a self transformation

$3415 xx = 0.5 ¥ { xx + 2.0 / xx )} ;
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~- order of evaluation test, simple left-to~-right order of
-- evaluation will load variable and then have to do a

-~ register to register operation to add right hand

-~ subexpression.

85416 xx = 0.5 * (2.0 / xx + xx )} ;

-~ order of evaluation test, simple left-to-right order of
-~ evaluation of subexpression is best here (perform

-~ the divide and then add from memory - no need to save
-- and restore the guotient - however, the miltiply by

-- 0.5 should be deferred).

Data Flow
Description Optimized?
Time : s5427 ( 1.8 ) vs ss11 ( 0.8 ) nostatistics
ss427 => LOOP ii := 11 ; EXIT WHEN ii = 11 ; die ; END LOCP ;
-- Assign integer to another integer and test if the two are egual.
ssll => kk := 11 ;
-=- Library scope integer assignment.
Data Flow
Description Optimized?
Time : ss504 ( 0.0 ) vs 880 ( 0.0 ) yes
238504 => IF kk /= kk THEN die ; END IF ;
-- kk /= kk is foldable to false.
ss0 => NULL ;
Data Flow
Description Optimized?
Time : ss505 ¢ 1.6 ) vs ss0 ( 0.0 ) nostatistics
$3505 => IF ii <= 2 AND ii > 2 THEN die ; END IF ;
~- foldable into false. No value could satisfy both subexpressions.
ss0 => NULL ;
Data Flow
Description Optimized?
Time : 8s558 ( 2.6 ) vs 8s559 ( 2.5 ) nostatistics
858558 => IF mm = 3 AND 11 = 2 ~- true
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THEN ii := mm - 11 ; -~ could fold into “ii 2= 1.7
END IF ;
~- if variables did not have values of 3 and 2, respectively
-- then the alternative would not execute, therefore optimizer
-~ can simplify expressions by using bounds determined by relations.
38559 => IF mm = 3 AND 11 = 2 ~~ true
THEN {i := 1;

END IF ;
Data Flow
Description Optimized?
Time : ss756 { 0.8 ) vs ss7 { G.8 ) no

ss756 => fold testing of range constraint test which is in range

BEGIN
ri = 0; -- range on ri is ~-2..2,
EXCEPTION -- range verification at compile time?
WHEN Constraint_error => die; -~ never reached
END;

-= Could be translated as simple assignment
-- Range checking would be verified at compile time
887 => kk := 1 ;
-~ Integer literal assignment to library scope variable.

Data Flow

Test Execution Bar Similar
Name Time Chart Groups
58753 147.00 1 2222232222233 2222222222 s T S ey |

55754 147.00 AR RN AR AR NN R R I NIRRT RN ENANRR N |

ss755 147.50 AR RN AR AN SN KRR RRT AR TN IR TR W |

ri := real’mantissa; -- range on ri is -2..2,
-- real’mantissa needs 6 digits

die; ~- will never be reached
EXCEPTION

WHEN Constraint_error => proc0;
END ;

-- Couuld translate into simple call on ""procO""™ since the control
-~ path is determinable at compile time. Assign out of range static
-- expression to an integer with range constraints. See i1f it

~~ optimizes into a simple raise of CONSTRAINT_ERROR.

58754 BEGIN
IF real’mantissa NOT IN -2..2

THEN
RAISE Constraint_error;
END IF;
ri := real’mantissa; -~ range on ri is -2..2
die; ~- will never be reached
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EXCEPTION
WHEN Constraint_error => proc{;
END ;
-- Could translate into simple call on ""procO " since the control
-- path is determinable at compile time. Explicit IF statement tests
-- static expression out of range and raises CONSTRAINT_ERROR.
ss755 BEGIN
ri := real’‘mantissa; -- range on ri is ~2..2,
~-- contraint_error wii. be raised here

die; ~- never reached
EXCEPTION

WHEN Constraint_error => NULL; -- this path taken
END ;

-- Could be translated as null. Assign out-of-range static
-- expression to a variable with range constraints. Null handler.

Folding
Description Optimized?
Time : ss40 ( 1.6 ) vs ssil { 0.8 ) nostatistics

8540 ii := ~11 ;

-- integer unary minus.

ssll kk := 11 ;

-~ Library scope integer assignment.
Folding

Description Optimized?
Time : ss41 ( 0.8 ) vs ss7 { 0.8) no

ss4l i1 == 1 + 1 ;
-~ test for folding of static integer expressian, ®"l+1".

- o e e e e e i e o T 3 o 2 i e . . T A

ss? kk =1 ;
-- Integer assignment, literal "1™ to ‘ibrary scope variable.

Folding
Description Optimized?
Time : ss542 ( 0.8 ) vs 887 { 0.8 ) nostatistics

5542 ii := -1 ;
-~ test for folding of static integer expression, "-1%,

ss7 kk := ;
~- Integer assignment, literal °1"™ to library scope variable.

Folding
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Description Optimized?

Time : 38216 { 7.5 ) vs ssl ( 0.8 ) nostatistics
58216 xx 3= 2.0 ; xx = xx *¥ 2 ;
-- example floating peint, constant folding, constant propagating
ssl xx := 1.0 ;
-~ Assign floating point variab'~ from literal vaiue.

Folding
Description Opt imized?
Time : 85217 ¢ 3.5 ) vs s8s7 0.8 ) nostatistics

83217 i1 e 2 ; 1§ :=w ji ** 2 ; - could be folded into ii := 4 ;
-- example integer point constant folding, constant propagating

ss7 kk = 1 ;
-- Integer literal assignment to library scope variabie.

88219 xx := 2.0 ** 2 ;
-~ foldable floating point expression. Equivalent to ss216.

et . . " s T e T 2 2 7 o S I o T 4 S o e A o o ot o e e

ssl xx 2= 1.0 ; 5.4
-- Assign floating point variable from literal value.

Folding T ST
''''' bescription  optimizear
Tine : 55303 ( 1.6 ) ve 25302 (  1.61  yes T
55303 ax 1= double ( 10 7
~- convert integer literal to double
ss302 ax 1= 1.0 ;. T
~~ extended precision floating point literal assignment
Folding N
"""" bescription  optimizear
Time : ss304 ( 3.2 va 307 ( 2111 nostatistics
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83304 xx := yy ** 16 ;
-~ floating point exponentiation, ** 16

33307 xx := yy * yy : XX ™ XX ¥ XX ;
XX 1= XX * XX ; XX ;% XX * XX
-~ floating point exponentiation comparison
Folding
Description Cptimized?
Time : 55305 ( 41.1 ) vs ss307 |{ 27.1 ) nostatistics
88305 xx == (yy ** 4) ** 4 ;
~- floating point exponentiation, ** 4) ** 4
88307 xx = yy * yy ; XX 1= XX * XX ;
XX = XX * xx ; XX 1= XX * xx ;
-~ floating point exponentiation comparison
Folding
Description Optimized?
Time : $s5532 { 7.5 ) vs 85529 ¢ 7.5 ) yes
88532 y = 2.0 ; xx i=y *™ 2 ;
-~ constant propagating : local variable visible in handler
88529 x = 2.0 ;xx 1= x ** 2 .
-= cf 58218
-- constant propagating with local variable not visible in handler
Folding
Description Optimized?
Time : s$s532 ({( 7.5 ) vs ss81 ( 0.8 ) nostatistics
88532 y = 2,0 ; xx =y %* 2 ;
-- constant propagating : local variable visible in handler
ssl xx := 1.0 ;
~- Assign floating point variable from literal value.
Folding
Description Optimized?
Time : ss2 ( 0.8 ) vs ss1 ( 0.8 ) nostatistics
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-~ Type conversion in static expression -~ real (1) .

- " = " > o o o Sl e o D Y s - o AP T i o S . - - -~ - - -

ssl xx := 1.0 ;
-~ Assign floating point variable from literal value.

Folding
Description Optimized?
Time : ssB { 0.8 ) vs ss7 {( 0.8 } yes

ss8 kk := int { 1.0 ) ;

-~ Type conversion from floating point literal to integer.
ss7 kk := 1;

-- Integer assignment, literal *1" to library scope variable.

Folding
Description Optimized?
Time : ss54 | 1.4 ) vs 8853 { 1.3 nostatistics

3854 ii := 11 (ei + 1) ;

-~ Reference to subscripted array of int, without checking.

-- Optimization : fold constant term into addressing expression
5853 11 = i1 (el ) ;

-- Reference to subscripted array of int, without checking.

Folding
Description Optimized?
Time : ss55 ( 0.8 ) vs ssll ( 0.8 ) yes

8855 i1 = i1 (1) ;
~-- Reference array with a constant subscript.

ss11 kk := 11 ;
~-- Library scope integer assignment.

Folding
Description Optimized?
Time : 5860 ( 0.8 ) vs ssl { ¢.8) nostatistics
8860 xx := -1.0 ; -~ fold minus into literal value
-- Assign negative floating literal to scalar.

ssl xx := 1.0;
-- Assign floating point variable from literal value.

132

CMU/SEI-92-TR-32




Time : ss189 { 5.6 ) vs ss190 ( 4.8 ) nostatistics
235189 41 := -mm / 3 ; -- can rewrite as ii := mm / -3 ;
-- Could fold leading unary minus into a literal
55190 ii :=mm / (-3) ;
-- Hand folded version of ss189.

Foldable Expressions
Description Optimized?
Time : ss587 ( 21.3 ) vs $s594 ( 6.0 ) no

x1 : CONSTANT := 2.0 ** (-70) ;
: CONSTANT real := 2.0 ** (=70) ;
: real := 2.0 ** (-70) ;
x4 : real := sgn ( one ) * 2.0 ** (-70)

LT

real := sgn ( one ) * 2.0 ** (-70)
CONSTANT := 10.0 * x1 ;
y : real := 2.0 ** (+70) ;

88587 y = y + x1 + x1 + x1 + x1 + x1 + x1 + x1 + x1 + x1 + x1 ;
-- for precisions less than 140 bits,

-- ®wry"w §s unchangel by addition, term too small

-- expression with foldab.e subexpression using named number
58594 y =y + x0 ; -~ %0 : ccastant = 10.0 * x1 ;

-- comparison with ss587 - 593, hand folded version

Foldable Expressions

Description Optimized?
Time : 53588 ( 21.3 ) vs 88594 ( 6.0 ) no

8s588 y 1= y + X2 4+ %2 + X2 + x2 + %2 + x2 + x2 + %2 + x2 + x2 ;
-- foldable subexpression using constant real

28594 y := y + x0 ; ~- %0 : constant := 10.0 * x1 ;:
-- comparison with s3587 -~ 593, hand folded version

Description Optimized?
Time : 55589 ( 24.7 ) vs s$s8594 ( 6.0 ) nostatistics
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38589 y :m y + x3 + x3 + x3 + x3 +# x3 + x3 + x3 + x3 + x3 + x3 ;
-~ using variable initialized with literal and not modifled
s8594 y := y + x0 ; -- x0 : constant := 10.0 v x1 ;

-- comparison with ss587 - 593, hand folded version

Time : ss590 ( 24.8 ) vs ss8594 6.0 ) no
85590 y = y + x4 + x4 + x4 + x4 + x4 + x4 + x4 + x4 + x4 + x4 ;
-- expression with foldable subexpression using variable
-~ initialized with expression and not modified
58594 y = y + x0 ; ~-- x0 : constant := 10.0 * x1 ;
-- comparison with ss587 -~ 593, hand folded version

Foldable Expressions
Description Optimized?
Time : ss591 ( 24.7 ) vs 5594 ( 6.0 ) no

$8591 y = y + x5 + x5 + x5 + x5 + x5 + x5 + x5 + x5 + x5 + x5 ;
~- comparison with ss587-590, using variable which is

-- modified, but is invariant within the timing loop

53594 y = y + x0 ; -- x0 : constant := 10.0 * x1 ;

~- comparison with ss587 - 593, hand folded version

Foldable Expressions
Description Optimized?
Time : 88592 ( 25.3 ) vs ss594 6.0 ) nostatistics

88592 y 1= y + x5 + X5 + x5 + x5 + x5 + x5 + x5 + x5 + x5 + x5 ;
IF bool THEN die ; procl (x5 ) ; END IF ;

~« here expression with x5 is not loop invariant

-- comparison with s8s587-591, expression not timing loop invariant

38594 y = y + x0 ; -~ %0 : constant := 10.0 * x1 ;

-~ comparison with ss587 - 593, hand folded version

Foldable Expressions
Description Optimized?
Time : 88593 ( 24.8 ) vs 85594 ( 6.0 ) no

88593 y = y + XX + XX + XM + XX + XX + XX + XX + XX + XX + XX ;
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-~ xx is global, expression is not loop invariant

-- comparison with ss587-592, variable is global, not invariant
38594 y =y + x0 ; -- x0 : constant := 10.0 * x1 ;

-~ comparison with ss587 - 593, hand folded version

Foldable Expressions
Description Optimized?

- o 4 e ot 700 o 2 e B e . T o o = T o o o o T = " - 4 o >

Time : ss8595 ( 23.0 ) vs 85594 ( 6.0 ) no

55595 y = y + 2.0 ** (-70) + 2.0 ** (-70} + 2.0 ** (-70) +

0 ** (-70) + 2.0 ** (=70) + 2.0 *= (~70) +

L0 *w (270) + 2.0 %% (-70) + 2.0 *x (~70) +
2.0 ** (-70) + 2.0 ** (-70) ;

-- foldable subexpression using literals -- cf 35587

83594 y =y + x0 ; -~ x0 : constant := 10.0 * x1 ;

-- comparison with 83587 - 593, hand folded version

Foldable Boolean Expressions
Description Cptimized?
Time : =x227 {( 1.1 ) vs ss84 ¢ Q.8 } nostatistics

§s227 IF 11 > mm OR False THEN die ; END IF ;
-- foldable boolean expression, OR False

o e e e T e o e S ik e e A e A e e

ss84 IF 11 > mm THEN die ; END IF ; -~ False
-~ IF statement, integer relation (False), no ELSE clause

Foldable Boolean Expressions
Description Optimized?
Time : 88230 ¢ 1.1 ) vs ssB84 ( 0.8 ) nostatistics

$s5230 IF 11 > mm OR False OR False THEN die ; END IF ;
-~ foldable boolean expressiocn, OR False QR False

ss84 IF 11 > mm THEN die ; END IF ; ~-- False
-~ IF statement, integer relation (False), no ELSE clause

Foldable Boolean Expressions

- s A o0 o e i e e o e e " - . L A i e k% e e e = = - - — -

Description Optimized?

Time : 35231 ( 1.5 ) vs ss84 { 0.8 ) nostatistics

88231 IF 11 > mm OR ELSE False OR ELSE False THEN die ; END IF ;
~- foldable boolean expression OR ELSE False OR ELSE False
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5384 IF 11 > mm THEN die ; END IF ; -~ False
-~ IF statement, integer relation (False), no ELSE clause

Description Optimized?

e i v o i o ko T T P o e o e A b Y B o B O SO N T sl o it A D S U i B o s e

Time : 55232 { 1.2 ) vs ss84 ( 0.8 ) nostatistics

$s232 1F 11 > mm OR ELSE False THEN die ; END IF ;
-- example of foldable boolean expression OR ELSE False

ss84 IF 11 > mm THEN die ; END IF ; ~- False
-- IF statement, integer relation (False), no ELSE clause

- - e o - o0 e ¢ e D 4B B T e A e s

Foldable Boclean Expressions

Description Optimized?
Time : ss5239 ¢( 0.0 ) vs ss50 ( 0.0 ) yes

ss239 FOR 4 IN int’ (2)..int’ (1) LOOP die ; END LOOP ;
-- example of FOR loop with null range, compile time determinable

Folding in Inline Function
Test Execution Bar Similar
Name Time Chart Groups
ss565 1.42 whRNk R |
s8563 1.43 XA AEN |
55564 1.91 XERARE IR |
33142 8.19 1230228002202 8at Al RRedtd s I
Individual Test Descriptions
FUNCTION max2 ( 1 , 3 : int ) RETURN int IS
BEGIN

IF i > j THEN RETURN i
ELSE RETURN j
END IF ;
END max2 ;
PRAGMA inline ( max2 ) ;

o - " - " Y o o . T . - A+ - . - -

LR TS

88142 xx := max2 ( yy , zz ) ;
-- call on local inline function

ss563 il = max2 (1, 100 ) ;

-~ inline function with literals, can be folded into ii := 100
ss564 ii := max2 (0 , ei ) ;

-- inline function test, first actual parameter to max

-~ function is 0, permitting simplification.
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35565 il := max2 (ei , 0 ) ;
-- inline function test, second actual parameter to max
-~ function is 0, permitting simplification.

Folding in Inline Function
Description Cptimized?
Time : ss563 ( 1.4 ) vs ss7 ( 0.8 ) nostatistics

55563 ii t=max2 (1, 100 ) :

-~ inline function with literals, can be folded into ii := 100
ss?7 kk := 1 ;

~-- Integer literal assignment to library scope variable.

Machine Idioms
Description Optimized?
Time : 8329 {( 4.0 ) vs ss3 ( 0.8 ) no

8529 xx := abs ( yy } :

-- Language feature test, floating point “abs"%.

-- Optimization : machine idiom "load absolute value" instruction
ss3 Xx = yy ;

-- Assignment of two floating point variables, library scope.

Machine Idioms
Description Optimized?
Time : ss30 ( 0.8 ) vs ssll { 0.8 ) nostatistics

8830 {ii := abs ( 11} ;
-- Language feature test, integer ™“abs" .
-~ Optimization : machine idiom, "load absolute value”

- - - —— - o o e o e

ssll kk := 11 ;
-- Library scope integer assignment.

Description Optimized?
Time : 3340 ( 1.6 ) vs 5511 ( 0.8 ) nostatistics

5540 1ii := -11 ;
~~ Language feature test, integer unary minus.
~- Optimization : machine idiom - *load complement™

ssll kk := 11 ;
-- Library scope integer assignment.
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Machine Idioms
Description Optimized?
Time : s345 ( 0.8 ) vs ss7 ( 0.8 ) nostatistics

53845 ii = 0 ;

-- Assign external integer to zero: machine idiom (clear memory)
837 kk = 1;

-- assignment of literal "1™ to library scope variable.

Machine Idioms

Description Optimized?
Time : 3852 ( 0.9 ) vs 859 ( 1.1 yes

ss52 1i := 11 + 1 ;

-~ Test use of ™INC" instruction for ™+1%.

ss9 kk = 11 + mm ; -~ Integer addition.
Machine Idioms

Description Optimized?
Time : ss59 ( 4.0 ) vs ss3 ¢ 0.8) nostatistics

8559 xx := -yy ;

== Unary minus, flocating point: machine idiom - load negative
$53 xx = yy ;

-~ Assignment of two floating point variables, library scope.

Machine Idioms
Description Optimized?
Time : ss115 ¢ 4.0 ) vs sslig ( 3.1 nostatistics

ssll5 a.field 1 := b.field 1 ; a.field 3 := b.field 3
a.field 4 := b.field 4 ; a.field 2 := b.field 2

-- Record component by component assignment (all fields).

== Optimization: machine idiom (block move instruction)

55114 a := b ;

~- Record assignment.

Machine Idioms
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Description Optimized?

Time : 55128 ( 2.5 ) vs s5129 ¢ 2.6 ) yes

ss5128 IF hue < black THEN hue := color’succ{hue) ;
IF hue > white THEN hue := color’pred(hue) ; END IF ;
-- PRED and SUCC functions on enumeration types.
$5129 IF ei < € THEN ei := ei + 1 ; END IF ;
IJF el > O THEN ei := ei - 1 ; END IF ;
-- Same computations as in ssl28 oa integers .
-- Optimization : machine idioms ~ {inc and dec)

Description Optimized?
Time : ss5196 ( 0.9 ) vs 58201 {( 2.9 ) yes

55196 ii :=pp * 2 ;
-- natural integer multiplication: machine idiom - shift?

s S e . > o~ " O o s o o S 1t e S A el S e e T o o

ss5201 ii := pp * 1009 ;
-- natural integer multiplication - not power of 2

Machine Idioms
Description Optimized?
Time : ss198 ( 1.1 ) vs s8s201 2.9) yes

53198 ii := pp * 4 ;
-- natural integer multiplication: machine idiom - shift?

s i o o 1 o b o e o S o e e - - - e . v =

85201 ii := pp * 1009 ;
-- natural integer multiplication - not power of 2

Machine Idioms
Description Optimized?
Time : ss201 ( 2.9 ) vs 88202 | 3.0) yes

85201 ii := pp * 1009 ;
-- natural integer multiplicatjon - not power of 2

e . i e e D . W b e e . T e P . . e S W S e = A o = .

55202 {1 := 11 * mm ;
-=- integer multiplication

Machine Idioms

o . e 0 B4 A o i e T e e P B ke S T g A e A A A e Al o o o e

Description Cptimized?
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88197 ii = pp / 2 ; -~ could shift

-- natursl divide multiplication, /2

-- Optim.zation : machine idiom ~ shift?
55203 ii = pp / 1009 ;

~-- natural division, 1009

Description Optimized?
Time : ss8199 { 1.1 ) vs 85200 ( 1.7) yes

55199 ii := pp mod 4 ; -- could mod by masking

-~ natural integer mod, MOD 4

-~ Optimization t machine idiom - AND masking operation

ss200 i3 :=pp - ( (PP / 4 ) * &4 ) ;
~- expression comparable to MOD 4
-- Optimization : machine idiom - AND masking operation

Machine Idioms

Description Optimized?
Time : ss204 { 1.8 ) vs 85200 1.7) nostatistics

83204 il := pp rem 4 ;

-~ natural integer REM, REM 4

$s5200 i1 :=pp - {( (PP 7/ 4 ) * &) ;

~- expression comparable to MOD 4

-~ Optimization ¢ machine idiom - AND masking operation

If times are the same, system is NOT using special idioms
for zero compare.

55207 IF 11 < O THEN die ; END IF ;

-- machine idiom -~ does load set condition codes?

-- Relational test, compare integer variable against 0

$s208 IF 11 > 100 THEN die ; END IF ;

-- relational expression, integer / non-zero literal comparison.
-- machine idiom -comparison with literal: compare immediate
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Time : ss5323 ( 4.2 ) vs 855324 ( 4.2 ) yes

1f times are the same, system is NOT using special id:ioms
for zero compare.

ss323 IF yy <= 0.0 THEN die ; END IF ;

-- floating point compare against zero

~~ machine idiom - load set condition codes against zero
55324 IF yy <= 0.1 THEN die ; END IF ;

-- floatiry point literal comparison against non-zero

Machine Idioms
Description Optimized?
Time : ss215 { 1.6 ) vs ssll { 0.8 ) nostatistics

ss215 ra.i := rb.1 ; ra.j := rb.j ;
-- machine idiom, block move? Copy two consecutively allocated
-- fields from one instance of a record type to another.

ssll kk := 11 ;
Machine Idioms

Description Optimized?
Time : 38503 { 1.6 ) vs ss0 ( 0.0) nostatistics

83503 i = if + 1 ; 41 = i1 - 1 ;
-~ Increment and decrement same integer scalar -- could be noop

Description Optimized?
Time : ss205 ( 0.8 ) vs ss5206 ( 0.8 ) yes

$s205 IF 11 -~ mm > 0O THEN die ; END IF ;
-~ Subtract two integers and compare result to 0
-- aiithmetic expression sets condition codes to
-~ reflect comparison agairst 0. If so, no need
-- for explicit compare

55206 IF 11 > mm THEN die ; END IF ;

-~ Directly compare two integers. Compare with ss205.
-- arithmetic expression sets conditicn codes to
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-~ reflect comparison against 0. If so, no need
~« for explicit compare

Jump Tracing
Description Optimized?
Time : ss5250 ( 0.0 ) vs ssC { 0.0 yes

55250 LOOP EXIT ; END LOOP ; ~-- should be a noop

Description Optimized?
Time : 35619 ( 0.4 ) vs ss0 { 0.0) nostatistics

58619 <<10>> GOTO 11 ; «<<12>> GOTO 13 ; <<l4>> GOTC 15 ;
<<1l6>> GOTO 17 ; <<11>> GOTO 12 ; <<13>> GOTC 14 ;
<<15>> GOTO 16 ; <<17>> null ;
-- can be jump traced intoc a null. 6 "GOTO™ statements which jump
-- to another "GOTO" statement. Statements are not in order.
-~ Test for jump tracing optimization.

e Y T D " e o o S A TP " o e 10 bl T o e e o o = o " o~

«s0 NULL ;

Jump Tracing
Description Optimized?
Time : 55620 ( 0.0 ) vs 880 { 0.0 ) yes

s3620 <<m0>> 7270 ml ; <<ml>> GOTO m2

<<m3>> GOTO m4 ; <<m4>> GOTO m5
<<mé>> GOTO m? ; <<m7>> null ;

== A peephole cptimizer which omits unconditional branch to

-- the next instruction would suffice to optimize this

~= 6 "GOTO" statements which branch tc next statement.

-=- This is a simpler test for jump tracing that ss61S.

-~ A peephole optimizer which omits a branch to the next

-- instruction would suffice to optimize this problem.

<<m2>> GOTO m3 ;
<<mS5>> GOTO mé ;

~ s

ss0 NULL ;
Jump Tracing

Description Optimized?
Time : ss26 ( 0.3 ) vs ss0 ¢ 0.0 ) nostatistics

§326 GOTO 12; <<11>> die; GOTO 1l1; <<12>> NULL;
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Time : 388261 | 0.0 ) vs ss0 ¢ 0.0 yes

88261 GOTO label; <<label>> NULL;
-- omittable code, either by flow analysis or peephole

Loop Fusion

Description Optimized?
Time : ss180 ( 8.9 ) vs ssliBl ¢ 7.9) nostatistics
ss180 FOR 1 IN 1..S
LOOP
i1 (1) =1
END LCOP ;

FOR i IN 1..5

LOOP
el (1) := 1.0 ;
END LOOP ;
-- Problem has two separate FOR loops which can be fused.
58181 FOR i IN 1..5
LOOP
11 (i) :=1;
el (i) := 1.0 ;
END LOOP ;
-- Problem has one loop fused by hand. Compare with ss180.
Loop Interchange
Description Optimized?
Time : 58749 912.8 ) vs ss750 | 893.3 ) nostatistics
$8749 FOR j IN int’ {1)..4int’ (10)
LooP
FOR i1 IN int’{1)..int’ (10)
Lo0P -- el(3j) is an invariant in this LOOP
matrix ( j, 1) :=e2 (4, 1 ) + el ( § ) ** 2 ;
END LOOP;
END LOOP;

-- Optimization test FOR invariant LOOP code motion. This
-- example contains an invariant expression in an inner LOOP.

ss750 FOR 1 IN int’ {1)..int’(10)
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Loop
FOR 3 IN int’(1)..1nt’ (10}

Loop -~ el(j) is not invariant in this LOOP
matrix (i, j) = €2 (i, ) + el ( )} "% 2
END LOOP;
END LOOP;
-~ Test FOR LOOP interchange optimization.

Loop Unrolling, Test Elimination

- > 2 41 Yo a1 s o ok T " Y - " " " - " o o~ = 7 = = o o

Description Optimized?
Time : ss541 ( 102.3 ) vs ss5542x ( 94,8 ) nostatistics
53541 FOR 1 IN 1..ei * 10
LooP
IF 1 = 1
THEN
el (1) ¢= (1.0+ el (1)) / 2.0
ELSE
el (i) = (el (1i-1) +el (i) ) / 2.0:
END IF;
END LOOP;
-~ unrolling, test elimination. This has variable upper bound.

ss542x el (1) := { 1.0+ el (1)) /f 2.0;

IF el >»= 1
THEN
FCR 1 in 2..ei*10
LOOP
el (1) t= { el (1 ~1) +el 1)) / 2.0;
END LOOP:;
END IF;
-~ unrolled version of ss541
Loop Unrolling, Test Elimination
Description Optimized?
Time : ss542 ( 100.9 ) vs s5542x ¢( 94.8 ) no
35542 FOR i in 1..10
LOOP
IF i =1
THEN
el (1) := ( 1.0+ el (1)) / 2.0;
ELSE
el (1) 1= (el ({-1) +el (1)) / 2.0
END IF;
END LGCOP;
~- unrolling, test elimination. ss541 with literal upper bound.
55542x el (1) = (1.0 +el (1)) / 2.0 :
IF ei >= 1
THEN
FOR i in 2..ei * 10
Loorp
el (L) = (el (i-1} +el (i) ) / 2.0;
END LOOP;

144
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END IF;
-- unrolled version of 55541

Description Optimized?

- o o o 7 S e o = o D T o A S o o - — ————

Time : ss105 ( 27.4 ) vs 85642 ( 22.1 ) nostatistics

$s105 FOR i IN 1..10 LOOP procO ; END LOOP ;

-- FOR LOOP, containing procedure call.

~~ Optimization : LOOP unrolling

85642 procld ; .. procl -~ 10 calls on proc0

-- Sequence of procedure calls. Timing consistency check.

Loop Unrolling

Test Execution Bar Similar
Name Time Chart Groups
55238 0_78 BRI ANE AT RR |

553 0'78 (2324222222222 ‘

5517 1_41 I2222223 2222222222222 2 ‘

ss5? 1.42 (2222222222223 222 222222 s i

58240 2.07 AR R U R AI RN R NIRRT AR AT EN NS !

ss3 xx := yy :
-—- Assignment of two floating point varjables, library scope.

8517 el ( ei ) := one ;

-- assignment to one dimensional array of real.
ssS57 el (1) := one ; =-- i is LOOP index

-- Test subscript computation using FOR LOOP index.

55238 FOR 1 IN 1..1 LOCOP el ( 1) := one ; END LOOP ;
-- can unroll LOOP into single assignment statement
-- simple example amenable to LOOP unrolling

L o o . T i . v D 7 A D e S e i A e i e o . e o

23240 FOR 1 IN 1..2 LOOP el (1) := one ; END LOOP ;
-~ simple example amenable to LOOP unrolling

Loop Flattening : 2 Dimensional Arrays Of Real

Test Execution Bar Similar
Name Time Chart Groups
3518 3.96 * ]

s3405 156.40 L3222 R E 2 s L e R T RS R R TR i

Individual Test Descriptions

o o -k > e e > o i S Y e o . 48 A4 i 4o L g B8 W b o e e = " " - > o = A2 > P 7 o = o P
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If time to execute 33405 is less than 100 times the time to execute
ssl8, then the compilation system is treating subscript calculations
using for loop indexes better than general usage. May be using
strength reduction, register allocation, or other techniques ir:luding
loop flattening. Flattening is the merging of the two nested loops
intc one larger loop.
e2 : ARRAY ( int’(1)..int’(10) ,int’(1})..int’ (10) )} OF real
= (int’ (1)L intf (10) =>{ int’ (1)..int’ {10) =>1.0));
ei, ej, ek : int := 1;
ss18 e2 ( ei, ej ) := one ;
-- assignment to two dimensional array of real. Checking.
ss405 FOR i IN 1 .. 10 LoOOP
FOR 3 IN 1 .. 10 LOOP
e2 (int (1), int ( §J) ) = one ;
END LOOP ;
END LOOP ;

-- nested FOR loop to access a 2D array -- loops could be flattened

Description Optimized?
Time : 83212 ( 9.9 ) vs 853 ( 0.8 ) no

$s212 FOR 1 IN 1..10 LOCP XX = Yy END LCOP ;
~~- example where invariant motion is possible

ss83 XX = yy ;
Loop Invariant Motion
Description Optimized?
Time : 55429 ( 3.2 ) vs s8430 { 3.2) yes

FUNCTION al ( i{ : int )} RETURN int IS

cal : CONSTANT ARRAY ( int’{(0)..int’{2) ) OF int := (0, 1, 2)
BEGIN

RETURN cal ( i )} ;
END al ;

s i . e A 2 D A b e T e T " L e e " e S e e o e e 7

58429 1i := al (ei ) ;
~- Is constant static array promoted to outer level?

caZ : CONSTANT ARRAY ( int’(0)..int’{2) ) OF int := (0, 1, 2y ¢
FUNCTION a2 ( i : int ) RETURN int 1S
BEGIN
RETURN ca2 ( { ) ;
END a2 ;

85430 ii := a2 ( ei ) ; ~-non-local constant array
~~ Is constant static array promoted to outer level?

Loop Invariant Motion

148
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Description Optimized?

et e o T e Y o e o S e e B At o 9 W W o i T e S o o A -

Time : 58536 283.1 ) vs 88535 ( 91.7 ) nostatistics

s8536 FOR 1 IN 1i..mm LOOP
xx = 0.0 ;
FOR k IN el’RANGE LOOP
xx = xx + el (k) * 2 ;

END LOOP ;
END LOOP ; -- xx is computed from invariants in ’'1" loocp
-~ very smart optimizer can do inner loop once
5535 xx = 0.0 ;
FOR k IN el’RANGE LOOP
XX = xx + el (k) *x*x 2 ;
END LOCP ; -- sample to embed in code for ss536
Loop Invariant Motion
Description Optimized?
Time : ss752 ( 9.9 ) wvs ssll ¢ 0.8 ) nostatistics
85752 FOR i IN 1..10 LOOP ii := 33 ; END LOOP ;
-~ could be optimized into an assignment statement, ssll
ssll kk := 11 ; ~-- Library scope integer assignment.
FOR LOOP with NULL body
Description Optimized?
Time : ss106 {( 5.8 ) vs ss0 { 0.0 ) nestatistics
ss106 FOR i IN 1..10
LCOP
NULL ;
END LOOP ; ~- noop
-- FOR loop with null body, could be nocop.
ss0 NULL ;
Test Merging
Description Optimized?
Time : 88178 { 2.3 ) vs 88179 2.9) yes
55178 IF 11 > mm
THEN ii := 0 ;
ELSE ii :=1 ;
END IF ;
IF 11 > mm
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THEN xx := 0.0
ELSE xx := 1.0
ERD 1IF ;

~- Problem has tests which may be merged.

- . - - - - 4O T D e Y W 00 P TR T N T R G e e o e

53179 IF 11 > mm

THEN ii := 0 ;
xx = 0.0 ;
ELSE ii := 1 ;
xx := 1.0 ;
END IF :

-- Problem has tests in ss178 merged by hand.

Description Optimized?

o e o ikt e 7 = T e 4 P e R T TP W S TP O W S Y W

Time : ss440 { 11.0 ) vs ss441 ( 9.2 ) nostatistics

ss440 FOR i IN 1..2
LooP
IF 4i = 1 THEN i1 ( 11 ) := 11 ; END IF
JF ii = 1 THEN el ( ei ) := one ; END IF
1

AR T}

IF ii/= THEN proc0 ; END IF ;
ii = 1 ii ;
END LOOP ;

-~ test merging. Several IF’s can be merged.

- o e o - o " A o i o o - -

ss441 FOR { IN 1..2
LOOP
IF ii = 1
THEN
11 (11 ) := 11 ;
el (ei ) := one ;
ELSE
proc0;
END IF ;
ii e« 1 - 14 ;
END LOOP ;
-- This version has merged tests, compare with ss440

- ———— -

Respect for Parentheses Test

o s 0 e o T - 0 5 2t 2t D o (s ik e e S iy o P s -

Similar
Groups

Execution Bar
Time

HERKE KNI ANTAIARFINRRIRRR SRR i
AR E AR AN R A NRAN RN A AN NIRRT TR NN |

5869 xx := 1.0 - yy;

-- This is a folded version of ss70.

ss70 xx = {( 0.5 -~ yy ) + 0.5;

-- This might be improperly folded into ss69.

148
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Superfluous Parentheses

Description Optimized?
Time : ss389 ( 0.8 ) vs ss3 {( 0.8 ) yes

s8389 xx = ( Yy )
-- Do superfluous parentheses produce code?

o~ e o = " 1 " = = = = A s WS e o

ss3 XX 3= yy J
-- Assignment of two floating point variables, library scope.

Description Optimized?
Time : s5s391 { 8.0 ) vs ss390 | 8.0 ) yes

$s391 xx := ( one + yy ) + zz ;
-- Add 3 float variables, parentheses around first two.

35390 xx := one + yy + zz ;
~-- Add 3 float variables

Superfluous Parentheses
Description Optimized?
Time : 58392 ( 8.0 ) vs 58390 { 8.0 ) yes
88392 xx := one + ( yy + zz ) ;
-- Add 3 float variables, parentheses around last two.
35390 xx := one + yy + 2z ;
-- Add 3 float variables
Superfluous Parentheses
Description Optimized?
Time : 88393 { 0.8 ) vs ssll ¢ 0.8 ) yes
55393 {i = ( mm ) ;
ss11 kk := 11 ;
-- Library scope integer assignment.
Superfluous Parentheses
Description Optimized?
Time : 58395 ( 1.3 ) vs 88394 ( 1.3 yes

CMU/SEI-92-TR-32 149



83395 1ii := (el + ej ) + 11 ;
-= Add 3 integer variables, parentheses around first two.

" 1 o o 2 1 2 T i e 4 e S S S Y A 1 Y o P W B A T G A e A - -

38394 11 = el + ej + 11 ;
-- Add 3 integer variables

Superfluous Parentheses

Description Optimized?
Time : 83396 ( 1.3 ) vs 53394 ( 1.3) yes

88396 1i = el + (ej + 11 ) ;

-- Add 3 integer variables, parentheses around last two.
88394 i1 :1= ei + ej + 11 ;

-- Add 3 integer variables

Order Of Evaluation & Register Allocation Test For Parameters
Description Optimized?
Time : ss546 ( 23.0 ) vs ss8547 | 21.6 ) nostatistics
85546 11 := max { 1, max ( 2, max ( 3, max ( 4, max {( 5, max ¢(
6, max ( 7, max (8, max (9, 10} )} ) )} ) ) );

-- non left-to-right order of evaluation can reduce register
-~ save/restore activity. Call on two parameter function, with
-- left actual parameter a literal and right a further function call.

-~ Nested 8 levels. Integer function (max). A strict left to right
-- order of evaluation will result in unnecessary storing and loading

55547 ii := max ( max ( max ( max { max ( max ( max ( max ( max
{10, 9>, 8), 7)), 6), 5), 4y, 3), 2,1 ;

~-- Analogous to 53546 with calls nested on first parameter.

-- A left to right order of evaluation is best here. Good

-- compiler will do both s$8546 and 58547 is about the same time.

Order Of Evaluation & Register Allocation Test For Parameters
Description Optimized?
Time : 28548 ( 80.1 ) vs 88549 { 84.0 ) yes

838548 xx := max ( 1.0, max ( 2.0, max ( 3.0, max { 4.0, max ( 5.0,
max ( 6.0, max ( 7.0, max { 8.0, max { 9.0, 10.0 )}))1)))) :
-- non left-to-right order of evaluation can reduce
-- register save/restore activity
$8549 xx := max ( max {( max ( max { max { max { max { max ( max
( 10.0, 9.0), 8.0y, 7.0y, 6.0), 5.0}, 4.0), 3.0}, 2.0}, 1.0) ;
-- ¢f 88548, for optimizing compilers, should be about same

- TR U . T R 2 e e . Yo P S v T 0 A S e P A L = -~
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Description Optimized?
Time : ss550 ( 15.5 )} vs ss8551 ¢( 15.2 ) nostatistics

i1 : int RENAMES global.il ( 1) ;

.« .

i10 : int RENAMES global.il ( 10 } :
88550 i1 = ¢ il + ( i2 + (i3 + (14 + ( 1S + ( i6 + ( i7 +
( i8 + ( 19 +110 )11y
-~ Integer addition with parameters nested on second operand.
-~ A left-to-right order of evaluation may generate unnecessary
-~ stores and reloads.
$s8551 11 = ({000 210 + 49 ) + 18 ) + i7 ) + i6 ) +
i) + 14 ) + i3 ) + 12 ) + 11 ) ;
-~ Integer addition with parameters nested on first operand.
~- A left-to-right order of evaluation is best.

Test Execution Bar Similar
Name Time Chart Groups
35442 106.30 AR KT AR RN RN ANREAN RN AN AR TN RN AR |

98443 106.30 KRR RN A AN AR ERRAANR R R RRN AR RSN AR |

Individual Test Descriptions

IF ss443 << ss442 THEN opt := YES

55442 xx = 0.0 ;
FOR i IN el’RANGE

LOOP
XX = xx + el (i) ;
IFel (1) > 2.0 -- never true
THEN
xx = el (1) ;
die ; -- die is a global procedure
END IF ;
END LOOP ;

-~ register allocation - with call on external procedure,
~- compiler cannot allocate "“xx™ to register within FOR LCOP.

$3443 xx := 0.0 ;
FOR i IN el’RANGE

xXx = xx + el (i) ;

IFel (i) > 2.0 -- never true

THEN

xx = el (1) ;

END IF ;
END LOOP ;
-- register allocation - no call on "die” so
~-- XX can be allocated to register

CMU/SE}-92-TR-32
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Register Allocation

Description Optimized?
Time : 88262 ( 18.4 ) vs 55263 ( 11.8 ) nostatistics

85262 xx := 0.1 - yy ;
IF xx < 0.0 THEN xx :i= -xx ; END IF
IF xx > 1.0 THEN xx := 1.0 / xx ; END IF
-- only 1 register store for xx is required if compiler
-- tracks registers. See time for ss263
-- example where good register usage would show up.
~- Floating point variable is used in several consecutive
-- IF statements.

LR

58263 xx := abs ( 0.1 - yy ) ;
IF xx > 1.0 THEN xx := 1.0 / xx ; END IF ;
-- example where good register usage would show up.
~- Variable used in 2 consecutive statements.
Register Allocation
Description Optimized?
Time : ss5264 ( 2.6 ) vs ss266 { 1.6 ) no

$s264 i1 := 33 ; IF i1 < 0 THEN ii := -ii ; END IF ;
-- example where good register usage would show up.
-~ Integer variable stored in one statement is referenced

-~ in relational test and in the THEN clause of the statement.

- - - - — 1 1 =

s5266 ii := abs ( 33 )
-- integer abs

Register Allocation

Description Optimized?
Time : 33265 ( 2.0 ) vs 83266 ( 1.6 ) no

55265 11 := 33 ; 1ii := abs ( ii ) ;
-- example where good register usage would show up.
-- Integer variable stored in one statement is referenced
~- in the next statement.

- -_— — A 1 e o o e A L S o e o e S e o

58266 ii := abs ( i3 i:
-~ integer abs

Relational Expression OR vs OR ELSE

Description Optimized?
Time : 55224 ( 2.3 ) vs 88223 ( 2.2 ) no
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An optimizing compiler could determine that the relations ‘mm=139’
and ‘mm > 1000’ could not have side effects (other than perhaps
raising an exception which would be permissible tc ignore) and
so it could validly treat the ‘OR’ operator as an ‘OR ELSE’.
83223 IF mm = 11 OR mm = 1392 OR mm > 1000

THEN

die ;

END IF ;

-~ relational expression examp.e, OR

55224 IF mm = 11 OR ELSE mm = 139 OR ELSE mm > 1000

THEN
die ;
END IF ;
-- relational expression example, OR ELSE.
IF Statement - Integer, Float - AND vs AND THEN
Description Cptimized?
Time : 5388 ( 5.5 ) vs ss89 ( 1.2 ) nostatistics
ss88 IF 11 > mm AND yy > 2z
THEN
Die ;
END IF; -- False
~-- IF statement, integer and floating relation (false} ©"AND®
5589 IF 11 > mm AND THEN yy > 2z
THEN
Die ;
END IF ; -~ False
~~ IF statement, integer and floating relation (false) "AND THEN"
IF Statement - Integer Relations, Simplifications
Description Optimized?
Time : 83228 ( 1.3 ) vs $3229 ( 1.3) yes

Because the possibility of side effects can be eliminated at
compile time, an optimizing compiler could treat these statements
the same.

35228 IF 11 > mm OR bool
THEN
die ;
END IF ;
-- boolean expression, integer relation OR boolean variable
85229 IF 11 > mm OR ELSE bool
THEN
die
END IF ;
-- boolean expression, integer relation OR ELSE boolean variable.

.~
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IF Statement ~ Integer Relations, Simplifications

$s231 IF 11 > mm OR ELSE False
OR ELSE False
THEN
die ;
END IF ;
-- foldable boolean expression "OR ELSE False OR ELSE False"
ss84 IF 11 > mm
THEN
die ;
END IF ; =-- False
-- IF statement, integer relation (False), no ELSE clause

Strength Reduction

Description Optimized?
Time : ss213 { 233.3 ) vs ss422 |{ 47.6 ) ne

88213 il := 0 ;
FOR i 4in 1..10
Loor
ii = 4 4+ 41 (i) * (-1 ) ** i ;
END LOOP ;

ii :=
FOR i in 1..10
LQOP
i1 = 44 + 41 ( 1) * kk ; kk = ~kk ;
END LOOP ;
-- Strength reduction, by hand, of ss213. Reduces an
-- exponential by FOR LOOP index " ( -1) =** jim

- s o D > A o . A e e o o P A | L e i o e S . . Y e Y o o e o o
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Strength Reduction

58423 isum := 0 ;
FOR i in 1..ten
LOOP
ii =1 * 2 ;
isum := isum + ii ;
END LOOP
~-- Has multiply by FOR LOOP index

.
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isum = 0 ;
FOR i in l..ten
LOOP
1i = i1 + 2 ; isum := isum + 1i ;
END LOOP ;
-- Hand reduced form of ss423,
-- with multiply by FOR LOOP index reduced to add.

Strength Reduction
Description Optimized?
Time : ss425 |{ 33.9 ) vs ss5426 | 36.6 ) yes

85425 analogous to ss423 with WHILE LOOP ;

~- Multiply by induction variable

-- which is not a FOR LOOP index.

58426 analogous to ss424 with WHILE LOOP ;

-~ Hand reduced form of 58425

-~ with multiply reduced to add. Irduction variable
-- is not a FOR LOOP index.

Strength Reduction
Description Optimized?
Time : ss15 ( 6.8 ) vs ss5 ( 6.8 ) yes

88l xx = yy ** 2 ;
-- (float) ** 2 which can be treated as (float) * (float).

Strength Reduction
Description Optimized?
Time : ss188 ¢ 2.7 ) vs 88202 ¢ 3.0) yes
38188 ii := 11 ** 2 ; «- could be strength reduced to 11 * 11
$5202 ii := 11 * mm ;
-- integer multiplication
Strength Reduction
Description Optimized?
Time : ss5279 ( 2.8 ) vs s5273 ( 2.8 ) yes

85279 11 1= 13§ ** 2
-~ bigint type **2
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88273 1i = 1% * 1k ;
-~ bigint type multiplication

ss438 FOR i IN el’range
LOOP
IF bool
THEN
el { 1) := xel ( i )} + zero * yel ( i) ;
xel (i) := one * yel { i} ;
ELSE
el (1) := xel (1) -~ zero * yel { i )
END IF ;
END LOOP ;
-~ test swapping. FOR LOOP with embedded IF statement
-- with LOOP invariant expressions in relation and in the
~- conditicnal statements. "IF" can be moved out of FCR
-- LOOP as done by hand in ss439.
55439 IF bool
THEN
FOR 1 IN el’range
LOOP
el (i) = xel (1 ) + zero * yel (1} ;
xel ( 1) := one * yel { i} ;
END LOOP ;
ELSE
FOR i in el’range
LOOP
el (1) := xel (i) - zero * yel { i) ;
END LOOP ;
END IF ;
-- test swapping. Hand optimized version of ss438.

References

[VADScross-a] VADScross Verdix Ada Development System for Cross-Development Environ-
ments, Version 6.05; VAX VMS = MC88020/30; User's Guide; Verdix Corpo-
ration; January 16, 1991.

[VADScross-b} VADScross Verdix Ada Development System for Cross-Development Environ-
ments, Version 6.05; VAX VMS = MC68020/30; Programmer's Guide; Verdix
Corporation; January 16, 1991.
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2.13 Precision

Question: What are the performance differences between single-precision and extended-precision
numeric operations?

Summary: Assignment, arithmetic operations, and computations involving math-library functions all
take longer to perform when computed with 9 or 15 digits of fioating-point precision rather than with 6
digits.The pertormance degradation attributable 1o extended-precision arithmetic ranges from 11% tor
the exponentiation function to 100% for a simple assignment statement. In general, the percentage
increase in execution time was larger for the single-statement tests than for composite tests such as the
Whetstone benchmark (14%) and the PIWG B tests (19% increase with checking enabled, 23%
increase with checking suppres sed).

Discusslon: Variables of an extended-precision type require more storage than their single-precision
counterparts, so i is to be expected that there is a performance penalty associated with the use of such
floating-point and fixed-point types. Users may be required to balance the need for greater precision in
computations with the efficiency of those computations. Similarly, users may define integer types with
various ranges that require, for example, 16 bits of storage to impiement one type and 32 bits to imple-
ment another. A comparison of the performance of operations on these different sizes of objects may
guide the user in specitying a required precision or a range of values that maximizes the efficiency and
minimizes the storage overhead of the resultant code.

The AES, ACEC, and PIWG suites all contain tests to measure the performance of operations on fixed-
point variables but, unfortunately, none of them contains a complementary set of tests to measure the
performance of the same set of operations on fixed-point variables ot greater or lesser precision. The
ACEC has a complementary set of tests for different sizes of integer objects, but the implementation of
the tests is flawed; see the second observation below for details.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target. Motorola MVME141-1 microcomputer: 256MHz *C68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVMES45 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: The results from the three benchmark suites show that, in all cases, there is a
performance price to pay for extended-precision floating-point computations.

AES Test Results:
Configuration 1, DIY_AES Version 2.0, Tests Ti05 and TI05b.
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The performance degradation attributable to extended-precision arithmetic ranges from 13% for expo-
nentiation {to a power of two) 10 70% for division. For addition and muttiplication, the percentages are,
respectively, 35% and 48%. The tests use the pre-defined types Short_Float (6 digits of precision) and
Float (15 digits of precision). These types require 32 and 64 bits of storage, respectively.

I. Group I - Runtime Efficiency Tests

I.13. TI05
This test examines the efficiency of fleoating point
computations, in particular, the average cpu time taken
for performing a single operation of additicn,
multiplication, division and exponentiation for each of
the predefined floating point types. The times measured
include the overhead of an access to a simple variable.

For the addition operation a minimum and maximum time is
given. The maximum time corresponds to the case where the
greatest amount of shifting of the operands is required
in order to align the decimal points so that the addition
can be performed.

The minimum time given corresponds to the case where no
addition is actually performed, because the operands are
so widely differing in magnitude. Rather, the largest
operand is selected as the result.

There is likely to be little difference in these maxima
and minima if the addition is performed in hardware.

The exponentiation test is performed twice, once when all
the real operands are raised to the power of 2 and then
again when exponents are generated which are in the range
that is safe for each real operand.

Exponentiation is defined in terms of repeated
multiplication in Ada (and division for negative
exponents) but an implementation may choose an
alterna*jve method of calculation (eg. by taking logs or
via iook-up tables).

Floating point type : short float

Addition (minimum time) : 5.73us
Addition (maximum time) : 5.73us
Multiplication : 5.85us
Division : 6.2%us
Exponentiation (to power of 2) : 16.4us
Exponentiation {(to any safe power) : 14.8us

Floating point type : float

Addition (minimum time) : 7.76us
Addition (maximum time) : 7.761s
Multiplication : B.68Bus
Division : 10.7us
Exponentiation (to power of 2) : 18.6us
Exponentiation (to any safe power) : 21.%us

I.14. TIOSB

This test examines the efficiency of floating point
computations, in particular, the average cpu time taken
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for performing a
function for each of the predefined floating point types.
evaluated are sines, square
The times measured

The mathematical

single evaluation of

functions

roots and natural logarithms.

the overhead of an access to a simpie variable.

Test failed. Malfunction in Test Harness
Exception in Unattended mode

ACEC Test Results:

Configuration 1, ACEC Release 2.0, Raw Output

mathemat ical

include

The table below is a summary of ACEC raw test results; it is not produced directly by the ACEC analysis
tools. {Apart from the tests that assign a value to an element of an array, none of these tests is pro-
cessed by the Single-System Analysis {SSA) tool of the ACEC, so the process of gathering the data
and computing the percentage degradation in speed is labor-intensive.) Test descriptions are symbolic
representations of the Ada language feature being measured. The “Cnvrt” operation represents the con-

version of a literal value 1o the appropriate type.

Whetstone benchmark results are reported in Kilo-Whetstone Instructions Per Second (KWIPS). All oth-
er results in this table are reported in microseconds. There are no subtraction tests in the suite, and
there is no extended-precision multiplication test; these omissions appear to be an oversight on the part
of the test developers. Unlike the AES tests, the ACEC tests did not use the predefined floating-point

types; user-defined types with 6 and 9 digits of precision were used instead.

Table 3: ACEC Floating-Point Results

Assignment: y=1.0 08 16 100.0%
Assignment: y =Cnvt (1.0) 08 16 100.0%
Assignment: y =X 08 1.6 100.0%
Assignment: a(i) =x 14 22 57.1%
Assignment: y = abs(x) 40 65 62.5%
Addition: y=X+2 6.3 9.0 42.8%
Subtraction: y=X-2 N/A N/A

Multplication: y=x"2z 6.8 NA

Division: y=x/z 72 113 56.9%
Exponentiation: y=x"2 68 97 42.6%
Trigonometric: y = sin{x) 64.2 76.0 18.3%
Trigonometric: y = COS(X) 716 948 18.4%
Trgonometric: y = exp(x) 107.7 1205 11.8%
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Table 3: ACEC Floating-Point Results

6-Digit 9-Digit Percent
Test Description Precision | Precision | Degradation
= — - — — e o
Trigonometric: y = log(x) 1379 1539 11.6%
Trigonometric: y = sqri(x) 518 64.6 24.7%
Trigonometric: y = arctan(x) 296.2 368.3 24.3%
Whetstone benchmark 914 KWiPS 805 KWIPS 13.5%
PIWG Test Results:

Contfiguration 1, PIWG 12/12/87 Release, Tests B000002 and B000003.

The PIWG B tests represent portions of an actual radar tracking application. The tests initia. ~ ~ and then
update a covariance matrix. When runtime checks are enabled, there is a 19% increase in the execution
time of the 9-digit test over the 6-digit test. With checks suppressed, the difference is 23%. Like the
ACEC tests, the PIWG tests used user-defined types with 6 and 9 digits of precision.

B000002 application program, tracker
TRACK WITH COVARIANCE MATRIX FLOAT 6 DIGITS

Time Required : 2.51790000G00000E+01 Seconds for 10000 Repetitions

TRACK WITH COVARIANCE MATRIX FLOAT 6 DIGITS - SUPPRESS

Time Required : 1.99250000000000E+01 Seconds for 10000 Repetitions

B00O0003 application program, tracker
TRACK WITH COVARIANCE MATRIX - FLOAT 9 DIGITS

Time Required : 2.99110000000000E+01 Seconds for 10000 Repetitions

TRACK WITH COVARIANCE MATRIX - FLOAT 9 DIGITS SUPPRESS
2.44450000000000E+01 Seconds for

Time Required : 10000 Repetitions

Observation 2: Analogous to the precision of floating-point types is the size of integer types. The test
results below show the performance consequences of using different sizes of integer types.
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ACEC Test Results:

Configuration 1, ACEC Release 2.0, Raw Output.

The table below is a summary of ACEC raw test results; it is not produced directly by the ACEC analysis
tools. Test descriptions are symbolic representations of the Ada language feature being measured. The
“Cnvrt” operation represents the conversion of a literal value to the appropriate type.

Table 4: ACEC Integer Results

Test Description 6-Digit 9-Digit Percent

Assignment: y = Cnvit (1) 08 NA

Assignment: y=Xx 038 08 0.0%
Addition: y=x+2 1.1 11 0.0%
Subtraction: y=Xx-2 N/A NA

Mutiplication:  y=x"'z 29 28 B3.4%
Divisoon: y=x/2 48 48 0.0%
Exponentiation: y=x*2 27 28 3.7%
Modulus: y=xmodz 135 133 -1.4%
Remainder: y=xremz 74 71 0.0°%

The negative numbers in the table actually represent an apparent improvement in performance. How-
ever, they are within the measurement tolerance of 5%, and so are not statistically significant. Therefore
the conclusion that might be drawn is that the size of the integer type has no eftect on performance.
Examination of the actual code, however, showed that the definitions of the integer subtypes “int” and
“Bigint” may be factors behind the results. These subtypes are defined {in package Global) as follows:

type Int_Type is new Integer;

subtype Int is Int_Type range -32_767.. +32767;

type Bigint_Type is new Integer;

subtype Bigint is Bigint_Type range = (2**30 -1 + 2**30)
(2**30 - 1 + 2**30);

Thus “Int" and “Bigint” are subtypes of a derived type that is derived from the same parent type (Integer).
Forthe Verdix MC68030 compiler, this integer type is a 32-bit quantity; the additional type Short_Integer
is the analogous 16-bit quantity. The above definitions do not allow the compiler to choose type Shon_-
integer for the 16-bit range ot values. To allow the compiler to choose an appropriate representation,
the definition of “Int", for example, could have been coded as follows:

type Int is range -32768 .. 32767;
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This definition does not force the 32-bit Integer type to be used for 16-bit quantities.
References

® none
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2.14 Private Types

Questlon: Is there a difference in performance between operations on objects of a private type and
objects of a visible type?

Summary: The three suites of benchmark tests considered in this document provide no tests that
explicitly answer this question. Use of private types within tests is incidental to the feature being tested.

Discussion: Private types are declared in the visible pan of a package; their corresponding full type
declarations occur in the specification after the word “private.” There are certain operations that are only
available to outside program units, while there are other operations that may only be performed within
the package in which the private type is declared. Atthough none of the suites tests the performance of
operations on objects of a private type, it is possible to construct tests to do so. In the reference cited
below, tests were constructed to examine the difference between private and visible types and deferred
versus non-deferred private types. For a Tartan Ada compiler for a MIL-STD-1750A target processor,
there was no distinction made by the compiler between a private object and a visible object. There was
a slight performance penalty incurred when deferred types were used because of the indirect access to
these types.

References

[NASA] NASA SEAS (Systems, Engineering, and Analysis Support) Program Techni-
cal Note. NASA Goddard Space Flight Center, Flight Dynamics Division /
Code 552. April 10, 1990.
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2.15 Records

Question: What is the performance of the "-arious methods for assigning values to record objects?

Summary: Aggregate assignment of record component values is significantly more expensive than
either record-to-record assignment or component-by-component assignment. There is also a
performance penatty for using packed records. Depending on the record components, record-to-record
assignment may or may not be taster than component-by-component assignment.

Discussion: A record is a composite object with named components, usually of ditferent types. Values
may be assigned to these components at run time (default assignment of values at compile-time is not
considered here) in three different ways:

® a single record-to-record assignment statement

® a set of component-to-component assignment statements

¢ a single aggregate-to-record assignment

Confliguration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compller: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Eiectric.

Observation 1: There are no AES or PIWG tests that address this issue; all results presented are from
the ACEC suite. This first set of results shows that component-by-component assignment is about 27%
more expensive than record-to-record assignment. Aggregate assignment is almost seven times more
expensive than record assignment and five times more expensive than component-to-component
assignment.

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Report “Record Assignment.”

o o s o B P e T Yl T A L i 20 o e Y e e T A o A o o o " o o

Test Execution Bar Similar
Name Time Chart Groups
ssllé 3.11 ool !

ss115 3.95 3283 |

55116 21.30 IR AR E RS SR REAR SRR AR R R 2R X R E S ’

Individual Test Descriptions
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TYPE fields IS

RECORD
field 1 : string { 1..3 ) ;
field 2 : real ;

field 3 : celor ;
field 4 : int range 1..10 ;
END RECORD ;
a, b : fields := ( “xxx”, 0.0, red, 1) ;

ss115 a.field 1 := b.fie'd_1 ;
a.field_3 := b.field 3 ;
a.field_4 := b.field 4 ;
a.field 2 := b.field 2 ;
-- Record component by component assignment {all fields).

e e - > " i W W A AP U W o i

85116 a s= { “xxx”, one, hue, ei } ; -~ Record assignment, aggregate.

o e e o = Al = = e e e~ o = o = o o~

A comment in test 115 notes that an optimizing compiler could do a block transfer of contiguous fields,
but that to recognize this would require the compiler to reorganize the component-by-component as-
signment statements.

Observation 2: This second group of ACEC results shows the effect of packing on both a set of
component-by-component assignments and a record-to-record assignment. Mixed-mode assignments,
where a conversion from packed to unpacked, or vice versa, is required, are also measured in this group
of tests. In all cases packing has a significant effect on performance. By contrast with the previous group
of results, this group shows record-to-record assignment to be more expensive than a set of
component-by-component assignments.

ACEC Test Results:
Configuration 1, ACEC Release 2.0, SSA Report “Field Assignments to Record (Packed, Unpacked).”

- S A B e o s o e e T . - — - - - - ]

Test Execution Bar Similar
Name Time Chart Groups
85156 7.52 2322222 l

35157 9.92 WRAKERN KN HK i

35160 10.60 1222122322223 i

ssl6l 11.50 ERERI KRN R * |
85158 22.40 AN R XTI RR N RN R AN R TR S RA L |
ss5159 31.10 AR RA AN A RN R A I AR RN AN AN RN i

TYPE descriptor I -- example from LRM 13.6
RECORD f1 : small_int := 1 ;
f2 : Boolean := True ;
f3 : color := white ;
f4 : med int := 200 ;
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£f5

END RECORD ;
TYPE packed_descriptor IS NEW descriptor ;
PRAGMA pack { packed descriptor ) ;

real := 1.0 ;

a, b : descriptor ;
¢, d : packed_descriptor ;
ss156 a.fl := integer ( ei ) ; a.f2 := 11 /= mm ;
a.f3 := hue ; a.fq4 := 200 * integer ( ei ) ;
a.f5 = yy ; -- field assignments to unpacked record
$8157 ¢.f1 := integer { ei ) ; c.f2 = 11 /= mm ;
c.f3 := hue ; c.f4 = 200 * integer ( ei } ;
c.f5 = yy ; -- field assignment to packed record
55158 a.fl := integer ( ei } ; a.f2 := 11 /= mm ;
a.f3 := hue ; a.fq4 := 200 * integer { ei ) ;
a.f5 1= yy :
¢ := packed_descriptor { a ) ;-- unpacked to packed
55159 c.fl := integer ( ei ) ; c.f2 := 11 /= mm ;
c.f3 := hue ; c.f4 := 200 * integer { ei ) ;
c.f5 1= yy ;
b := descriptor ( ¢ ) -~ unpack record
55160 a.fl := integer ( ei ) ; a.f2 := 11 /= mm ;
a.f3 := hue ; a.fq4 := 200 * integer ( ei ) ;
a.fb = yy ;
b = a ; -- unpacked record move
55161 d.f)l := integer { ei ) ; d.£f2 := 11 /= mm ;
d.f3 := hue ; d.f4 := 200 * integer ( ei } ;
d.f5 1= yy ;
c :=d ; -~ packed record move
References
® none
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2.16 Rendezvous

Question: What are the performance characteristics of the various kinds of task rendezvous?

Summary: The larger the number of parameters passed in an entry cali, the slower the rendezvous
will be. The number of entries in a task has a significant effect on rendezvous performance whereas the
number Sf tasks in a task set has virtually no effect. Simple rendezvous performance (no passed
parameters) is slightly faster when the called task is waiting at an accept statement for an entry call.
Equal-priority tasks yield rendezvous executiun times that are about 25% faster than rendezvous times
for tasks with different priorities because the order of execution of such tasks can be arranged to reduce
the number of task switches. Use of a special pragma (pragma PASSIVE), available in the Verdix
compiler, achieves a seven-foid reduction in rendezvous execution time.

1scusslon: The rendezvous mechanism is the primary means of inter-task communication in the Ada
programming language. It can take many forms, ranging from a simple synchronizing signal to an elab-
orate data-transfer operation with multiple choices for conditional or unconditional acceptance ot the
transferred data. Ideally, a bench:ark, or set of benchmarks, to measure the performance of the Ada
rendezvous would allow a user to generate a “perforrrance envelope™ for all the coding choices avail-
abie. In practice, the benchimark suites discussed in this document provide specific data points within
the performance envelope and give the user no control over the form of the actual tests. They do provide
useful information, but in a format that often requires the user to examine the code of specific tests in
order to understand the purpose of the tests and interpret the results. Because of the number of task
rendezvous tests in the AES and ACEC suites, results from only a subset of these tests are presentad
below. The PIWG suite only contains eight tests to measure rendezvous performance so results from
all of them are listed.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory modu'e board in a Motorola MVME945 VMEDbus chassis.

Compller: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: AES Task Rendezvous Tests.

AES Test Results:
Contiguration 1, DIY_AES Version 2.0, output from selected group ¥ and L tests (TK02, TK03, TLO2-
TL8, and TL12-TL17).

Note:Inthe heading below, MASCC I' (Modular Apoproach to System Construction, Operation, and Test)
refers to a software design method than has been marated by the UK Ministry of Defence since 1981.
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K. Group K - MASCOT Tasking Tests

K.2.

TKO2

This test determines the c¢pu time taken to execute a
simple rendezvous.

A benchmark was used to execute a simple rendezvous with a
single scalar parameter. (A simple rendezvous is one where
an accept statement accepts & normal entry cali}. The cpu
time was measured when the caller was blccked Ti

when the accepting task was blocked first (this relies on
pragma PRIORITY being effective).

b
~
]
or

3
o1

Caller blocked first : 300%us
Accepting task blocked first : 287us

TKO3

This test determines the cpu time taken to execute a
simple rendezvous with guarded alternatives.

A benchmark was used tLo execute a simple rendezvous with a
single scalar parameter. (A simple rendezvous is one where
an accept statement accepts a normal entry call). The
rendezvous is one where the called task has a selective
wait with two guarded alternatives. The cpu time was
measured when the caller was blocked first and when the
accepting task was Dblocked first (this relies or pragma
PRIORITY being effective).

Caller blocked first : 338us
Adzcepting task blocked first : 344us

L. Group L - General Tasking Tests

L.2.

TLOZ2

This benchmark test determines the effect of idle tasks
on performance. Tesks performing computations and ‘dle
tasks (l.e. tasks simply awaiting rendezvous) are used
and the test executed several times, increasing the
number of idle tasks each time. The percentage
deterioration per idle task in system performance (as
compared with no idle tasks being present) is examined.

e e - ——————— +
| Number of | Deterioration !
! idle tasks | per idle task |
d o ——————— A ———— +
1 1 ! 0% j
| 5 i 0% f
! 10 ] 0% |
| 20 , 0% |
- ——— b - +
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L.3. TLO3

This bench-i.k test determines the effect cf seiect
alternatives on performance.

This test measures the cpu time taken to select the first
alternative in a select statement containing two select
alternatives and also compares the cpu time taken in
selecting the first select alternative with the cpu time
taken in selecting the last select alternative in a
select statement containing 20 alternatives.

o - o - -
i Number of | Selection | Cpu !
i Selections ) ! Time |
e mm—— PO S —— i . +
| 2 i First ! 342us |
| 20 | First ! 418us |
| 20 | Last { 441lus |
b ——————— e —————— o ———— -

L.4. TLO4

This benchmark test examines the effect on performance cf
guards on entry statements.

The test measures the cpu time taken to select the first
alternative in a select statement containing two select
alternatives when simple boolean guards are present and
also compares the cpu time taken in selecting the first
select alternative with the time taken in selecting the
last select alternative in a select statement containing
20 alternatives when simple boolean guards are present.

o e e @t e e e e o e e e -

| Number of | Selection | Cpu 1
| Selections | | Time |
R ,m————— PO —— e ———— +
l 2 | First | 345us |
| 20 | First | 414us |
! 20 t Last 1 454us |
o ——— b ————— hm - ————

L.5. TLOS

This benchmark test examines the effect on performance of
passing parameters in rendezvous. The test compares the
cpu time taken for rendezvous with no parameters with
that for passing parameters. Various sized integer arrays
are used as parameters and average timings taken.
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A e ———————— L et L L LR +
| Number of | Mode | Cpu |
| Array Elements | } Time |
e e m - ———— o ——— ——
| 0 | - | 174us |
! 25 | in | 285us |
| 25 { in out | 285us |
} 100 | in | 285us !
| 100 | in out | 285us |
| 1000 | in 1 285us |
1 1000 i in out | 285us |
i 2000 | in { 285us |
| 2000 | in out | 285us |
B S fom—————— I — e

TLO6

This benchmark test determines the effect of multiple
entry clauses on performance.

This test compares the efficiency of usiag many small
tasks with single entry clauses against many large tasks
containing multiple entry clauses, 20 tasks/entry
statements are used. For the large task, efficiency of
selecting alternatives in reverse order is also compared
with that for making the selection in a straight order.

20 tasks with single : 289%us per rendezvous
entry clauses

Multiple entry clause

(in order) 426us per rendezvous
{in reverse order) 425us per rendezvous

TLO7

This benchmark test examines the effect of ordering on
entry clauses in a select statement.

This test compares the average cpu time taken to call a
select alternative when the alternatives are called in
order, with that to call a select alternative when the
alternatives ave called in reverse order, for 10
alternatives.

In order : 382us per rendezvous
In reverse order : 382us per rendezvous

TLO8

This benchmark test determines the fajirness of selective
wait statements.

A check is made that a task does not execute the else
alternative of a selective wait statement more than a
small number of times before a reschedule 1is forced.
Tasks of equal priority are used for the test.

The tasks were not given a fair distribution of time.

Note that the results of this test cannot be relied on if
pragma PRIORITY is not completely effective.
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L.12. TL12

This test determines the rules for selecting open accept
alternatives in the event that more than one can be
chosen. If several rendezvous are possible and several
accept alternatives can be selected, one is selected
arbitrarily, (LRM 9.7.1 (6)].

The main task contained three open accept alternatives,
three server tasks were also provided which looped
indefinitely providing rendezvous opportunities with a
given accept alternative. The test ascertained that, in
50 rendezvous, each accept alternative was used in
sequence, the order being accept alternative 3, accep:
alternative 2 and accept alternative 1.

L.13. TL13

This test determines the rules for selecting open delay
alternatives in the event that more than one can be
chosen. An open delay alternative will be selected if no
accept alternatives can be selected before the given
delay has elapsed and that, if several delay alternatives
can be selected, one is selected arbitrarily, [LRM 9.7.1
(8)1.

The main task contained three open delay alternatives,
each having a value of 20ms. No server tasks were
provided and so there were no opportunities for
rendezvous. The test ascertained that, in 50 attempted
rendezvous, the same delay alternative was selected. This
was delay alternative number 3.

L.15. TL1S

This benchmark test examines the effect on performance of
passing various numbers of parameters in rendezvous. The
test compares the cpu time taken for rendezvous with no
parameters with that for passing parameters. Various
numbers of integer parameters are passed at rendezvous,
the average timings being taken.

temm e mm—————— B +
| Number of | Cpu |
| Parameters | Time |
Fremmmn e ————— Fmm e ———— +
I 0 i 174us |
| 1 i 28lus |
[ 10 ! 289%us |
| 100 | 390us |
e ————— dmmm i — +

L.16. TL16

This test determines the overheads of conditional entry
calls which are not accepted, and selective waits which
are not called.

For the conditional entry call test, there are two tasks.
One makes repeated conditional entry calls, the other

CMU/SEI-92-TR-32 173




contains an accept for the entry which is never executed.
The rendezvous 1is timed. The test ascertained that a
conditional entry call takes 41.5us.

For the selective wait test, there are two tasks. One
executes repeated selective waits, the other contains a
call to the selective wait entry which is never executed.
The rendezvous is timed. The test ascertained that a
selective wait takes 55.3us.

L.17. TL17

This test determines the overheads of using entry
families. Entry families define a "family"™ of entries,
each entry reing distinguished by a different discrete
value.

Timings are performed for 5 ordinary entries, for an
entry family with 5 discrete values, for 10 ordinary

entries, and for an entry family with 10 discrete values.

The test used two tasks performing rendezvous with either
calls to ordinary entries, or to entry families.

The following results were obtained:

o s e tmmm—————— +
| Rendezvous | Cpu i
] ] Time |
fomm e —————— b +
| 5 ordinary | 1l.74ms |
I 5 family | 1.88ms |
| 10 ordinary | 3.76éms |
| 10 family | 4.00ms |
B T T TS PRI B . +

Observation 2: ACEC Task Rendezvous Tests.

ACEC Test Results:
Configuration 1, ACEC Release 2.0, raw cutput from selected tests:
e task3 ® taskd4 ® task23 ® task24 ® task26
* task30 ® task31 ® task41 ® task42 ® task43
® task47 ® task_num_1 ® task_num_5 ® task_num_10 ® task_num_15

® task_num_20 ® task_num_25 & task_num_30 ® task2 num_t ® task2_num_5
® task2_num_15 e task2_num_20 ® task2 num_25 ¢ task2_num30

The ACEC contains a great many tasking tests, and many of these tests measure rendezvous perior-
mance. To limit the scope of this observation, not all of the task rendezvous test results are reported
here. All ACEC tasking results reported here come from the Ancitlary Data section of the report gener-
ated by the Single System Analysis (SSA) tool. This section of the SSA report does not provide sum-
mary descriptions of tests and does not group test results into various categories (e.g., rendezvous with
no passed parameters, rendezvous with N passed parameters). An attempt has been made to alleviate
the prob'em for a subset of test results in this observation.

Simple Rendezvous: The results below are all from tests in which no parameters are passed in the ren-
dezvous. Except for the last two tests listed, the calling and called tasks have different priorities as-
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signed so that one or the other can be made 10 arrive at the rendezvous point first. The called task has
the following structure:

TASK BODY resource IS
BEGIN
L.OOP
ACCEPT request;
ARCCEPT release;
END LOOP;
END resource;

The foliowing is a summary description of the tests in this group:
TASK3: caller arrives first, both tasks in same compilation unit
TASK23: callee arrives first, both tasks in same compilation unit
TASK24: caller arrives first, callee in subunit
TASK26: caller arrives first, callee in separate package
TASK41l: callee arrives first, callee in separate package
TASK42: equal priority tasks, callee in separate package
TASK43: equal priority tasks, both in same compilation unit

Because the tasks in each of the last two tests above were of equal priority, it was possible for the com-
piler to execute them in an order that saved 1/4 of the task swilches as compared with the execution
order of the tasks in the preceding tests.

o i g g D e o o T e L . T ) - o o T 2 = e o o e e o e i o R A s AP o

task3 time per rendezvous = 251.8

task23 time per rendezvous = 234.6
task24 time per rendezvows = 2520
task26 time per remdezvous =  251.8
taskdl time per rendezveus = 235.6
taski? time per rendezvows = 173.5
taskd3 time per rendezvous =  172.0

" " e o Y o o D e oL e e T e e s S 2t T e W o = = — "

Selective wait with delay alternative: in the first test below, the called task has a select statement with
a delay alternative that is not taken because the called task is ready to rendezvous with the calling task.
The idea is that it should not be necessary for the delay to be set up and then cancelled. in the second
test, the delay alternative is actually taken and then cancelled immediately when the calling task initiates
the rendezvous.
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Bounded Buffer: In each of the following tests, elements are written to and read from a 10-element buf{-
er. The buffer is in a task and reads and writes are performed by calling the appropriate entry. The ele-
ments are non-scalar in the first test (10-character strings) and scalar in the second test (single
characters).

The rendezvous times shown above were determined by dividing the elapsed time of a sequence of two
reads and two writes by four. The same bounded-buffer tests were also featured in the main SSA repont,
where the elapsed time was reported. The SSA results are shown below.

e e o L e o o v T T e D o AR 0 D A Y AR e A o e 2 e R

Test Execution Bar Similar
Name Time Chart Groups
task4q4?7 1395.40 (222222222222 22 R2A2 2222222202 2 |

task4 1447.40 HEEXRRXRRARRK AR AR RN AR AN RN AR E |

e i 4 > O 8 e s M e e e . e R S O O AL A oy A S T Y A A e A A O L A e e

On many systems, the time to process parameters in a rendezvous is a
small fraction of the time to perform the rendezvous proper.

SUBTYPE image IS String (1 .. 10 ) ;

x1l : image := "“abcdefghii” ;
x2 : image := "0123456789" ;
Y : image ;

task4 -- Bounded buffer with nonscalar parameter
buffer.write ( x1 ) ;
buffer.write ( x2 ) ;
buffer.read (y ) ;
buffer.read ( y ) ;
SUBTYPE image IS character RANGE *a’' .. *2';
x1 : image := ‘B’ ;
x2 : image := 'Y’ .
y : image ;
task4? -- Bounded buffer with scalar parameter
buffer.write ( x1 ) ;
buffer.write { x2 ) ;
buffer.read (y ) ;
buffer.read ( y ) ;
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Variable number of called tasks: Each test below {task_num_1, task_num_5, etc.) has a single calling
task and many equal-priority called tasks; the actual number of called tasks is indicated in the test name.
Each called task is of the form shown above for the simple rendezvous test group. The calling task
makes a sequence of pairs of entry calis of the form

tl.request;
tl.release;

t2.request;
t2.release;

And so on, for each called task in the test, The idea is to see if rendezvous performance is affected by
the number of tasks.

task_num_ 1 time per rendezvous = 251.9
Cask_num 5 tine per rendezveus - 2025
Cask_num 10 time per remdezvows - 197.3
Cask_mum 15 tine per rendezvous = is1.8
Cask_mum 20 tine per rendezvens - 1s9.2
task_mam 25 tine per remdezvous - 139.5
Cask_mum 30 time per remdezvous - 201.8

Variable number of calling tasks: This test group is a variation on the group above. With only a single
called task, the test is structured so that entry calls from many calling tasks are queued on the “request”
entry of the called task before the “release” entry is called.

" o e e o > i . e T S o i ot o T o b v O T o D o i o B 0 Ao AP A A kb o e o

task2_num 1 time per rendezvous = 234.1

task2_num 5 time per rendezvous = 2235
taskz_num 10 time per rendezvous = 228.5
taskz_mum 15 time per rendezvous = 231.4
tasko_num 20 time per rendezvous = 235.6
tasko_mum 25 time per rendezvous = 238.2
task2_mum 30 time per rendezvous = 243.2
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Observation 3: PIWG Task Rendezvous Tests.

PIWG Test BResults:

Configuration 1, PIWG 12/12/87 Release, Tests T000001 through T000008.

Test Name: T000001 Class Name: Tasking
CPU Time: 275.6 microseconds
Wall Time: 275.6 microseconds. Iteraticon Count: 64

Test Description:

Minimum rendezvous, entry call and return time
1 task 1 entry , task inside procedure

ne select

Test Name: T000002 Class Name: Tasking
CPU Time: 275.6 microseconds
Wall Time: 275.6 microseconds. Iteration Count: &4

Test Description:

Task entry call and return time measured

One task active, one entry in task, task in a package
no select statement

Test Name: TOOC002 Class Name: Tasking
CPU Time: 278.3 microseconds
Wall Time: 278.3 microseconds. Iteration Count: 32

Test Description:

Task entry call and return time measured

Two tasks active, one entry per task, tasks in a package
no select statement

Test Name: TOO00D4 Class Name: Tasking
CPU Time: 330.6 microseconds
Wall Time: 330.6 microseconds. Iteration Count: 16

Test Description:

Task entry call and return time measured

One tasks active, two entries, tasks in a package
using select statement

Test Name: T0O00005 Class Name: Tasking
CPU Time: 279.0 microsecor.ds
Wall Time: 278.8 microseconds. Iteration Count: 4

Test Description:

Task entry call and return time measured

Ten tasks active, one entry per task, tasks in a package
no select statement

Test Name: T000006 Class Name: Tasking
CPU Time: 401.0 microseconds
Wall Time: 400.8 microseconds. Iteration Count: 4

Test Description:
Task entry call and return time measurement
One task with ten entries , task in a pack/ e
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one select statement, compare tc T000005

Test Name: TO00007 Class Name: Tasking
CPU Time: 171.9 microseconds
Wall Time: 171.7 microseconds. Iteration Count: 64

Test Description:
Minimum rendezvcous, entry call and return time
1 task 1 entry
ne select

Test Name: T000008 Class Name: Tasking
CPU Time: 609.4 microseconds
Wall Time: 609.4 microseconds. Iteration Count: 32

Test Description:
Measure the average time to pass an integer
from a producer task through a buffer task
to a consumer task

The Verdix compiler provides a “PASSIVE” pragma that enables certain kinds of tasks to be optimized
for runtime performance. For comparison, the results of modified PIWG T tests are shown below. The
T tests were modified by inserting a “pragma PASSIVE” in the specification of each task. The VADS
documentation states that this pragma is not allowed in all cases; for example, tests T000001 and
TO00007 generated a compile-time warning of the form:

20: task Tl is
21: entry E1 ;
22: pragma PASSIVE;

A:warning: Appendix F: PASSIVE only allowed for a task declared in a
library package
23: end T1 ;

For this reason, the pragma was only put in the specification of the BUFFER_TYPE task type in test
T000008.

Test Name: T000001 Class Name: Tasking
CPU Time: 275.6 microseconds
Wall Time: 275.8 microseconds. Iteration Count: 64

Test Description:

Minimum rendezvous, entry call and return time
1 task 1 entry , task inside procedure

no sejiect

Test Name: T000002 Class Name: Tasking
CPU Tin.:: 36.3 microseconds
Wall Time: 36.3 microseconds. Iteration Count: 256

Test Description:

Task entry call and return time measured

One “ask active, one entry in task, task in a package
no select statement
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Test Name: TOC0003 Class Name: Tasking
CPU Time: 37.9 microseconds
Wall Time: 37.9 microseconds. Iteration Count: 128

Test Description:
Task entry call and return time measured
Two tasks active, one entry per task, tasks in a package
no select statement

Test Name: T000004 Class Name: Tasking
CPU Time: 40.3 microseconds
Wall Time: 40.2 microseconds. Iteration Count: 128

Test Description:

Task entry call and return time measured

One tasks active, two entries, tasks in a package
using select statement

Test Name: T000005 Class Name: Tasking
CPU Time: 35.5 microseconds
Wall Time: 35.5 microseconds. Iteration Count: 32

Test Description:

Task entry call and return time measured

Ten tasks active, one entry per task, tasks in a package
no select statement

Test Name: TO00006 Class Name: Tasking
CPU Time: 53.4 microseconds
Wall Time: 53.4 microseconds. Iteration Count: 32

Test Description:
Task entry call and return time measurement
One task with ten entries , task in a package
one select statement, compare to TO00005

Test Name: T000007 Class Name: Tasking
CPU Time: 171.9 microseconds
Wall Time: 172.0 microseconds. Iteration Count: €4

Test Description:

Minimum rendezvous, entry call and return time
task 1 entry

no select

Test Name: TQ00008 Class Name: Tasking
CPU Time: 151.7 microseconds
Wall Time: 151.7 microseconds. Iteration Count: 128

Test Description:

Measure the average time to pass an integer
from a producer task through a buffer task
to a consumer task

References

® none
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Appendix A BSY-2 Performance Questions

This appendix describes how the performance questions addressed in this report were selected. There
are two primary sources for questions (in order of examination}:

1. The BSY-2 SSP Style Guide
2. SEl experience

The Style Guide was examined first and a list of questions was generated from it. A supplementary list
of questions was then prepared to cover additional topics based on the experiences of the authors and
reviewers within the SEI.

The question lists were developed to be inclusive, particularly in analyzing the Style Guide. Only trivial
questions were edited from these preliminary lists.

Each question was designed 1o quantify the performance of alternate programming constructs which a
programmer or system designer might reasonably select to implement a program or system. in general
these are choices between alternate Ada constructs.

The lists were then merged and the most significant items were selected for further examination. In pre-
paring the merged list the REST Project staff considered two primary criteria:

* The potential performance payoff between alternatives.
*® The availability of performance tests and data to answer the questions.
The question list was then reviewed within the SEI for relevance and completeness.

A.1  Questions from the SSP Ada Style Guide

The Software Standards and Procedures Manual (SSP) for the AN/BSY-2 contains an Ada Style Guide
which will control the format for coding Ada software. The style guide emphasizes readability, consis-
tency and maintainability. It therefore specifies how variables and Ada statements are to be construct-
ed, module size, format of statements and specifies usage rules for a number of language features. The
Ada Style Guide does not specifically discuss execution efficiency for these constructs.

The SSP Ada Style Guide was reviewed, and any recommendations which represented choices con-
taining possible performance trade offs were isolated and the relevant performance questions were for-
mulated. These questions are the primary basis for this repont. The list included here is the complete
list derived from the Style Guide. It was subsequently edited and the questions collated into the final list.

A.1.1 Performance Issues Relating to the Ada Style Guide

The Ada Style Guide is relatively brief and does not specifically address Ada performance issues. How-
ever, some performance questions are relevant to specific rules laid down by the Style Guide:

1. Sections 10.3.4 and 10.3.5.7 specify the use of digits N rather than using the pre-
defined types SHORT_FLOAT, FLOAT, and LONG_FLOAT.

1.1. Does performance differ if predefined types are used?
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1.2. How does the compiler select the underlying representations when numeric
representations are set by the user?

1.3. What is the relationship between requested accuracy and performance? Is
the relationship a smooth curve or discontinuous?

2. Section 10.3.5.1 specifies the use of enumeration types for clarity rather than code
values or strings.

2.1. What are the performance characteristics of enumerated types versus data
representations using strings, characters and integers?

3. Section 10.3.5.5.b specifies that the attributes 'RANGE or 'FIRST and ‘LAST are
to be used in preference to constant values in setting bounds and ranges for loops
and similar constructs.

3.1. What are the performance trade offs between ranges provided by attributes
and by constant values?

4, Section 10.3.5.11 forbids the use of anonymous types to define arrays.

4.1. s the performance of amrays using anonymous types different from typed ar-
rays?

5. Section 10.4.3.2.b specifies that array aggregates should be used in place of
explicit loops “wherever applicable.”

5.1. What are the performance characteristics of array aggregates and corre-
sponding loops?

6. Section 10.5.4.a states that a case statement should be used “when a selection is
based on the value of a single variable or expression of a discrete type other than
Boolean.”

6.1. What are the performance trade offs between the case statement and other
logical selectors?

6.2. Does the performance of logical selectors vary with number of selection al-
ternatives?

7. Section 10.7.3.a specifies that a subroutine should normally contain 100 or fewer
executable lines, and never more than 200.

7.1. Does the extra call overhead meaningfully increase the execution time of pro-
grams divided into smaller modules compared to a monolithic design?

7.2. Is pragma INLINE effective?

8. Section 10.6.3.¢ specifies that pragma INLINE shouid only be used for procedures
and functions that are internal to the body of a package, task, procedure or
function.

8.1. How does the use of pragma INLINE affect runtime performance?

9. Section 10.9.2.2 specifies that task types should be used instead of multiple task
detinitions performing the same function.

9.1. What are the comparative performance values for task types versus multiple
task definitions?
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10. Section 10.9.6.b specifies that all programs using time should use the
CALENDAR.TIME type or DURATION type except when “more precision” is
needed.

10.1. What is the accuracy of types CALENDAR.TIME and DURATION?
10.2. What accuracy can be expected using alternate time formats?
10.3. What is the performance of alternative time formats?

11. Section 10.9.8.¢ allows tasks to be declared without any priority. Section 10.9.8
does not state if tasks with and without priority may be mixed.

11.1. What is the default priority of a task?

11.2. Does the behavior of a task with a default priority vary at all from an equiva-
lent task with an explicit priority?

11.3. What happens when tasks with and without priority are mixed in a single pro-
gram?

12. Section 10.9.11 forbids the use of pragma SHARED.
12.1. What is the efficiency of shared variables specified by pragma SHARED?

13. Section 10.11.7.a specifies that runtime checks will not be suppressed uniess
suppression is required to achieve acceptable program efficiency.

13.1. How is performance changed by suppressing runtime checks?
13.2. What optimizations does the compiler perform for runtime checking?
13.3. How is performance affected by suppressing individual runtime checks?

13.4. Does simulating selected runtime checks by explicit comparisons offer any
performance advantage?

14. Section 10.12 describes the use of generic units.

14.1. What is the comparative performance of generic and nongeneric units?

15. Section 10.12.2.a specifies that a generic subroutine should normally contain 100
or fewer executable lines, and never more than 200.

15.1. Does the extra call overhead meaningfully increase the execution time of pro-
grams divided into smaller generic modules comparea to a monolithic de-
sign?

15.2. Is pragma INLINE effective for generic routines?

A.2 SEIl Additional Questions

The SEI supptemented the list of questions from the SSP Style Guide with some additional questions.
These are generally intended to augment the recommendations from the style guide or to explore is-
sues that the style guide does not cover.
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A.2.1 SEl Questions
1. Compiler Optimizations

1.1, What are the effects of different levels of optimization?

1.2. What specific optimizations are performed? (Relate to optimization levels if
possible.)

1.3. Does optimization minimize or eliminate unnecessary runtime checking?

2. Device Interfacing

2.1. Can an access type be used to map a data structure 1o a real device ad-
dress?

2.2. Can a record representation clause be used to specify the structure of device
registers?

2.3. Can unchecked type conversion (via generic function UNCHECKED_ CON-
VERSION) be used to generate real device addresses from integer represen-
tations of such addresses?

2.4. Is package LOW_LEVEL_lO implemented? Is it a viable alternative to using
address clauses, record representation clauses, and unchecked type con-
version?

2.5. Isinterfacing to other languages (in particular, assembler language) suppont-
ed? Is the performance different from the all-Ada approach?

2.6. How are interrupts handled?

2.6.1. Can an address clause be used to map an interrupt entry to a real
interrupt vector?

2.6.2. What is the interrupt latency for handlers written in Ada?

2.6.3. Can interrupt handlers written as Ada tasks be optimized to provide
performance comparable with that of other types of handlers?

2.6.4. Atwhat priority level does the interrupt entry execute?

2.6.5. At what priority level does the task body outside the interrupt entry
execute?

3. Exception Handling
3.1. Does the presence of an exception handler affect runtime performance?
3.2. What is the runtime cost of raising and propagating an exception?

4. Loop Control
4.1. Do different loop constructs vary in efficiency?

5. Numeric Operations.

5.1. Whatis the performance impact of using double-precision versus single pre-
cision arithmetic?
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5.2. Is there a performance difference between predetined numeric types and
user-defined numeric types?

5.3. lIs the math library efficient?
6. Pragmas
6.1. What pragmas are supported?
6.2. How does pragma ELABORATE affect the performance of a program?

6.3. Does inlining of subprograms via pragma INLINE improve performance? By
how much?

7. Program Structure

7.1. What are the performance characteristics of subprograms?

7.1.1. What s the overhead of calling subprograms with various numbers/-
modes/types of parameters?

7.2. What are the performance characteristics of generic objects? How do they
compare with the equivalent non-generic objects?

7.3. How does the locality of data and procedures affect performance?

7.3.1. What is the performance effect of declaring data locally, within the
package, in other packages, in library units?

7.3.2. What is the overhead of calling subprograms that are in the same
unit, in different units, in ditferent packages?

7.3.3. What effect does the use of private and limited private types have on
performance?

7.3.4. What is the overhead of calling subprograms that are in subunits
(i.e., separately compiled)?

8. Representation of Data

8.1. What are the performance and memory size consequences of using repre-
sentation attributes to vary numeric characteristics?

8.2. What are the performance and memory size consequences of using repre-
sentation attributes for selected data types (e.g., arrays, records, strings)?

8.3. Are there performance and memory size differences between private and
public data types?

9. Runtime Checking
9.1. Does runtime checking impose a significant performance overhead?

9.2. What is the performance of UNCHECKED_CONVERSION versus explicit
type conversion?

10. Tasking

10.1. What are the performance characteristics of a tasking program?

CMU/SEI-92.TR-32 " 485




11.

10.1.1. Does the presence or absence of an explicitly-detined priority atfect
a task's performance?

10.1.2. How long does i take to crea'le/terminate atask?

10.1.3. Is there a difference in the perdormance of dynamically-created and
statically-created tasks?

10.1.4. Does the presence of an exception handler in a task affect that task’s
performance?

10.2. What are the performance characteristics of task rendezvous?
10.2.1. How is rendezvous performance affected by the number of tasks?

10.2.2. How is rendezvous performance atfected by the number ot entries in
the task(s)?

10.2.3. How is rendezvous performance aftected by the presence of guards
in the rendezvous?

10.3. What are the characteristics of task set scheduling?
10.3.1. What algorithm(s) is(are) used to schedule a task set?

10.3.1.1. What algorithm is used to schedule a task se! with
explicitly defined priorities?

10.3.1.2. What aigorithm is used to schedule a task set without
explicitly defined priorities?

10.3.1.3. What algorithm is used to schedule a task set with a
mixture of explicitly detined priorities and undefined
priorities?

10.3.2. Is the runtime system preemptive and priority-based?

10.3.3. Is blocking minimized?

10.3.4. Is priority inversion avoided?

10.3.5. s VO interleaved with task execution or is it a blocking effect?

Time Management
11.1. What is the resolution of CALENDAR.CLOCK?

11.2. What is the resolution of the delay statement?
11.3. What is the resolution of the type DURATION (DURATION'SMALL)?
11.4. What is the overhead of reading CALENDAR.CLOCK?

11.5. What is the overhead of performing calculations with types TIME and DURA-
TION?

11.6. Is CALENDAR.CLOCK subiject to drift or jitter? If so, how much?
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A.3 Combined Guestions List

Performance questions from all sources were combined into a single list, organized by subject. individ-
ual questions from this list are then addressed in the body of the report.

Note: SSP indicates a question from the BSY-2 SSP Style Guide; SEI
indicates a question provided by the authors.

A.3.1 Merged List of Questions
1. Tasking

1.1. Task Priority
1.1.1. What is the default priority of a task? [SSP 11.1]
1.1.1.1. A master task (the task created for the main program)?
1.1.1.2.  Alibrary task (a task created in a library unit)?

1.1.1.3. “Vanilla” tasks (tasks created within a program either by
declaration or dynamically)?

1.2. Task Set Scheduling
1.2.1. Algorithm(s)

1.21.1. What algorithm is used to schedule a task set with
explicitly defined priorities? [SSP 11.2 and SEI 10.3.1.1]

1.21.2.  What algorithm is used to schedule a task set without
explicitly defined priorities? SSP 11.2 and SE! 10.3.1.2]

1.2.1.3.  What algorithm is used to schedule a task set with a
mixture of explicitly defined priorities and undefined
priorities? [SSP 11.3 and SE! 10.3.1.3]

1.2.2. Is the runtime system preemptive and priority-based? [SE! 10.3.2]
1.2.3. Is blocking minimized? [SEI 10.3.3]
1.2.4. Is priority inversion avoided? [SEIl 10.3.4]

1.25. Is /O interleaved with task execution or is it a blocking effect? [SEl
10.3.5]

1.3. Task Performance

1.3.1.  What are the comparative performance values for task types versus
multiple task definitions? [SSP 9.1 and SEI 10.1.3]

1.3.2. Does the presence or absence of an explicitly-defined priority affect
a task’s performance? [SEIl 10.1.1]

1.3.3. How long does it take to create/terminate a task? [SEl 10.1.2]
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1.3.4. Does the presence of an exception handler in a task aftect thattask's
performance? [SEIl 10.1.4]

1.4. Rendezvous

1.4.1. How is rendezvous performance affected by the number of tasks?
[SE110.2.1]

1.4.2. How is rendezvous performance affected by the number of entries in
the task(s)? [SEl 10.2.2]

1.4.3. How is rendezvous performance affected by the presence of guards
in the rendezvous? [SEI 10.2.3]

2. Compiler Optimizations
2.1. What are the effects of different levels of optimization? [SE! 1.1]

2.2. What specific optimizations are performed? (Relate to optimization levels if
possible.) [SEIl 1.2]

2.3. Does optimization minimize or eliminate unnecessary runtime checking?
[SEI1.3]

3. Loop Control
3.1. Do different loop constructs vary in efficiency? [SE! 4.1]

3.2. What are the performance trade offs between loop limits set by constants and
by attributes (e.g., ‘FIRST, ‘LAST, or ‘RANGE)? [SSP 3.1}

4. Logical Testing

4.1. What are the performance trade offs between the case statement and other
logical tests? [SSP 6.1]

4.2. Does the performance of logical selectors vary with the number of selection
alternatives? [SSP 6.2)

5. Data Representation
5.1. Predefined Types

5.1.1. Is there a difference in performance between predefined and user
defined types? [SSP 1.1]

51.2. Time

5.12.1. What is the accuracy of types CALENDAR.TIME and
DURATION? [SSP 10.1 and SE1 11.3]

5.1.2.2. What accuracy can be expected using allemate time
formats? [SSP 10.2]

5.1.23. What is the performance of alternative time formats?
[SSP 10.3]

5.2. User Defined Types
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5.21. Numeric Types

5.2.1.1. Is there a performance difference between predefined
numeric types and user-defined numeric types? [SE! 5.2]

5212 How are underlying types selected for number
representations? [SSP 1.2}

5.2.1.3. What is the relationship between requested accuracy
and performance? Is the relationship a smooth one or
discontinuous? [SSP 1.3]

5.21.4. What is the performance impact of using doubie-
precision versus single precision arithmetic? [SE! 5.1}

5.21.5. Isthe math library efficient? [SE! 5.3]
5.2.2. Enumeration Types

5.2.2.1. How does the performance of enumeration types
compare with that of equivalent representations using
strings or code values? [SSP 2.1}

5.2.3. Private Types

5.2.3.1. Are there performance and memory size differences
between private and public data types? [SE! 8.3]

5.3. Arrays
5.3.1. Definitions

5.3.1.1. s the comparative performance of arrays different when
they are defined anonymous types and named types?
[SSP 4.1]

5.3.2. Assignment

5.3.2.1. What are the performance characteristicu of array
aggregates and corresponding loops? {SSP 5.1}

5.4. Representation of Data

5.4.1. What are the performance and memory size consequences of using
representation attributes to vary numeric characteristics? [SEIl 8.1]

5.4.2. What are the performance and memory size consequences of using
representation attributes for selected data types (e.g., amays,
records, strings)? [SE! 8.2)

5.5. Type Conversion

5.5.1. What is the performance of UNCHECKED_CONVERSION versus
explicit type conversion? [SEl 9.2]
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Generics

6.1. What is the comparative performance of generic and nongeneric units?
[SSP 14.1]

6.2. Does the extra call overhead meaningfully increase the execution time of pro-
grams divided into smaller generic modules compared to a monolithic de-
sign? [SSP 15.1]

Program Structure
7.1. Subprograms

7.1.1. Does the call overhead meaningfully increase the execution time of
programs divided into smaller modules compared to a monolithic de-
sign? [SSP 7.1]

7.1.2. What is the overhead of calling subprograms with various numbers/-
modesf/types of parameters? [SEI 7.1.1]

7.2. What are the performance characteristics of generic objects? How do they
~ompare with the equivalent non-generic objects? [SEI 7.2]

7.3. Locality of data and procedures

7.3.1. What is the performance effect of declaring data locally, within the
package, in other packages, in library units? [SEl 7.3.1]

7.3.2. What is the overhead of calling subprograms that are in the same
unit, in different units, in different packages? [SEi 7.3.2]

7.3.3. What effect does the use of private and limited private types have on
performance? [SEI 7.3.3]

7.3.4. What is the overhead of calling subprograms that are in subunits
(i.e., separately compiled)? [SE! 7.3.4]

Pragmas

8.1. What pragmas are supported? [SE! 6.1]
8.2. pragma ELABORATE

8.2.1. How does pragma ELABORATE affect the performance of a pro-
gram? [SEl 6.2}

8.3. pragma INLINE
8.3.1. Is pragma INLINE effective? |[SSP 7.2 and SEl 6.3]

8.3.2. Whatis the runtime performance effect of pragma INLINE? [SSP 8.1
and SE| 6.3)

8.3.3. Is pragma INLINE effective for generic routines? [SSP 15.2]
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8.4. pragma SHARED

8.4.1. What is the efficiency of shared variables specified by pragma
SHARED? [SSP 12.1]

8.5. pragma SUPPRESS

8.5.1. How is performance changed by suppressing alt constraint checks?
[SSP 13.1 and SEI 9.1]

8.5.2. How is performance changed by suppressing individual constraint
checks? [SSP 13.3 and SEI 9.1]

8.5.3. Does simulating constraint checks by explicit comparison offer any
performance advantage? [SSP 13.4 and SEI 9.1]

8.5.4. What optimizations does the compiler perform for constraint check-
ing? [SSP 13.2]

9. Device Interfacing

9.1. Can an access type be used to map a data structure to a real device ad-
dress? [SEIl 2.1]

9.2. Canarecord representation clause be used to specily the structure of device
registers? [SE| 2.2]

9.3. Can unchecked type conversion (via generic function UNCHECKED_CON-
VERSION) be used to generate real device addresses from integral repre-
seniations of such addresses? [SEI 2.3]

9.4, Is package LOW_LEVEL_IO implemented? Is it a viable alternative to using
address clauses, record representation clauses, and unchecked type con-
version? [SEl 2.4]

9.5. Isinterfacing to other languages (in particular, assembler language) support-
ed? Is the performance different from the all-Ada approach? [SEl 2.5]

9.6. Interrupts

9.6.1. Can an address clause be used to map an interrupt entry to a real
interrupt vector? [SE! 2.6.1]

9.6.2. What s the interrupt latency for handlers written in Ada? [SEI 2.6.2]

9.6.3. Can interrupt handlers written as Ada tasks be optimized to provide
performance comparable with that of other types of handlers?
[SEI 2.6.3]

9.6.4. At what priority level does the interrupt entry execute? {SE| 2.6.4)

9.65. At what priority level does the task body outside the interrupt entry
execute? {SEl 2.6.5]
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10.

11.

Exception Handling

10.1. Does the presence of an exception handler affect runtime performance? [SEI
3.1]

10.2. What is the runtime cost of raising and propagating an exception? [SE! 3.2]
Time Management

11.1. What is the resolution of CALENDAR.CLOCK? [SE! 11.']

11.2. What is the resolution of the delay statement? [SE! 11.2]

11.3. What is the resolution of the type DURATION (DURATION'SMALL)?
[SEI 11.3)

11.4. What is the overhead of reading CALENDAR.CLOCK? [SE! 11.4]

11.5. What is the overhead of performing calculations with types TIME and DURA-
TION? [SEI 11.5]

11.6. Is CALENDAR.CLOCK subject to drift or jitter? If so, how much? [SE! 11.6]

A.4 Editing the Questions List

The merged list of questions was edited to include questions which could be quantitatively analyzed and
which had a high explanatory value. The questions were then rewritten for additional clarity and to ex-
ploit available data.

A.4.1 Final Questions List
This list is organized alphabetically by topic.

1.

Arrays: What are the performance characteristics of array aggregate assignments
and corresponding loop constructs?

Check Suppression: How does performance change when checks are turned off?

Data Location: What is the performance effect of declaring data locally or outside
the executing scope?

Enumeration Types: How does the performance of operations on objects of an
enumeration type compare with the performance of an equivalent representation
using strings or numeric values?

Exceptions: What are the performance consequences of providing exception
handling capabilities?

Generic Units: What is the comparative performance of generic and non-generic
units?

Inlining of Procedures: What is the effect of inlining procedures and generic
procedures?

Logical Tests: What are the performance trade offs between the case statement
and If statement?

Loop Efficlency: Do different loop constructs vary in efficiency?

192

CMU/SEI-92-TR-32




10.

11.
12.

13.

14.

15.

Module Size: is the performance of a program divided into modules different from
a monolithic design?

Optimization Options: What are the effects of different optimization levels?

Precision: What are the performance differences between single-precision and
extended-precision numeric operations?

Private Types: Is there a difference in performance between operations on objects
of a private type and objects of a visible type?

Records: What is the performance of the various methods for assigning values to
record objects

Rendezvous: What are the performance characteristics of the various kinds of
task rendezvous?
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Appendix B Benchmark Sources

information on how to obtain the source code and documentation of the benchmark suites used in this
report is presented below.

B.1 The Ada Evaluation System

The Ada Evaluation System (AES) may be obtained from the British Standards Institution at the follow-
ing address:

Software Product Services
Software Engineering Department
BSIQA

P.O. Box 375

Milton Keynes MK14 6LL

United Kingdom

Tel. 0908 220908

UUCP: sed@bsiga.uucp

(Internet; bsiqa!sed@uunet.uu.net)

As of this writing, the current version is the DIY-MAPSE-01 version. It is available at a cost of 3000
pounds sterling. BS! also offers a validation service at a cost of 24,000 pounds sterling.

The Ada Evaluation System (AES) will be merged with the Ada Compiler Evaluation Capability (ACEC)
under a joint agreement between the Ministry of Defence of the United Kingdom and the Department of
Defense of the United States that was signed in June of 1991. The merged product will be released as
version 4.0 of the ACEC; as of this writing, the expected release time is the third or fourth quarter of
1993.

B.2 The Ada Compiler Evaluation Capability
The Ada Compiler Evaluation Capability (ACEC) may be obtained from

Data and Analysis Center for Software (DACS)
P.0O. Box 120

Utica, NY 13503

Tel. (315) 734-3696

internet: dacs-info@kaman.com

As of this writing, the current release of the ACEC is 3.0. There are three documents: the User's Guide,
the Reader’s Guide, and the Version Description Document. The total cost for the software and docu-
mentation is 100 US dollars. (Release 3.0 of the ACEC is not the merged AES-ACEC product referred
to above.)
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B.3 The PIWG Benchmarks

The ACM Performance Issues Working Group (PIWG) benchmarks may be obtained in one of three
ways:

* Via anonymous ftp (Internet file transfer protocol) from the ajpo.sel.cmu.edu
machine. Users should issue the command “ftp ajpo.sei.cmu.edu” and log in using
the word “anonymous” as the login name and an identifying string (e.g., the user's e-
mail address) as password. Change directory (‘cd” command) to the
“public/piwg/piwg_11_92" directory and use the fip file-transter commands tc
retrieve the files.

e Via the PIWG bulletin board. Ideally, users should access this from a PC (rather than
a dumb terminal) using a modem capabie of sending and receiving at 1200 baud or
higher. The number of the bulletin board is (412) 268-7020. Once connected to the
bulletin board, users will be able to navigate their way around the system using
simple menus that the system provides. The point of contact for this service is Gene
Rindels, (412) 268-6728.

* Via a written request or telephone request to the following service:

PIWG Distribution

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Tel. (412) 268-7787

As of this writing, the current release of the PIWG suite is the one known as the 11/92 release. There
is no charge for the PIWG benchmarks. Documentation for the PIWG benchmarks consists principally
of the READ.ME file distributed with the suite and comments in the individual test programs and com-
mand files. There is 1lso additional information about the PIWG suite in the Winter 1980 special edition
of Ada Letters (Vol. X, No. 3, specia! edition on Ada Performance Issues).
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Appendix C Question Format and Instructions

Each of the questions covered by this report is prepared using a standard format. This appendix pre-
sents that format.

C.1 Blank Question Entry

The blank question entry shows the headings used for a performance entry.

3.1
Question: ?

Summary:
Discussion:

Configuration(s) tested:

1.

Observation 1:

Observation 2:

References

C.2 Instructions for Filling in Questions

Each entry in the performance and style report addresses a topic where we believe Ada programmers
or system designers will have to make choices which affect performance. The entries offer guidance on
how to program for high performance. Each entry should be designed to be read independently ot all
other entries.! In addition to presenting the conclusions of the author(s), sutficient raw data should be
included to support all conclusions drawn and references provided so that the reader can repeat the
experiments, both with the tested configuration and using hardware and software variants and upgrad-
ed versions.

C.2.1 Topic

The topic serves as a title and alphabetizing key for the entry. The topic rephrases the guestion to put
the keywords in order of importance. For example, the question “Do different loop constructs vary in
efficiency?” is translated to the topic “Loop Efficiency™. If ordering the keywcrds in order ¢f importance

1. Howaver. entries should freely referance outside sources and appendices included in this report which can be
sharad between entrigs, aspecially where it would be tedious to repeat the information for each entry. Related
entries should be mentioned, as a cross reference, but their contents should not be included.
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conflicts with clearly conveying the sense of the topic, the topic should be phrased for clarity, as #t is
assumed that cross referencing in the subject index will make up for any “unnatural” placements. The
topic shouid be composed to aillow readers to browse through the report and identity the interesting sec-
tions.

Question: 7

The question puses the topic for the entry. it is normally phrased to indicate the area of interest and the
coding choices which the entry will address. (Topics considered for this report will normally discuss per-
formance issues where the application developer has a choice or choices about the programming idiom.
The report tells the reader what the performance consequences of each choice is.)

An example question is “Do different loop constructs vary in efficiency?” where the Lrogramming idiom
is loop constructs (which are 100 numerous 10 enumerate ih the question) and the phrase “vary in efti-
ciency” is tagged on fo serve as a reminder to the reader that they will receive information on run time
efficiency. In answering the question, the author must list loop constructs, indicate which were tested,
and then draw conclusions about “efficiency”.

Questions must be both short and readily comprehensible. While the question should accurately reflect
the contents of the entry, it should lean towards generality rather than being highly specialized. While
this will lead to partial answers, this is neither unexpected nor undesirable. Limits of available test data
from standard benchmark suites should be called out, and, if required, supplemented by customized
tests (or via improvement to the standard suites).

Summary:

The summary is a brief statement of the question’s answer. It should state the answer by:

« Declaring whether the question could be answered—there may be cases whare
a valid and interesting topic could not be analyzed for lack of data.

¢ Defining the “winners™ and/or the “losers” for the question, that is, which
alternative is the most efficient.

However, there may be several ways of selecting winners and losers (for exam-
ple, the fastest choice may not be the most space efficient). These qualifications
must be mentioned.

In some cases the difference may not be significant or consistent, which shouid
then be called out in the answer. Lengthy explanations should be reserved for lat-
er sections of the entry.

» Any significant limitations should be mentioned. For instance, if the available data
misses several alternatives, a qualification should be made. However general
caveats such as “this conclusion is based on limited data™ should not be made in
the summary.
Ideally, the summary should be a singie sentence. In any case it shouid be limited to a short paragraph.
If additional qualification is required, it should be a forward reference to the discussion or observation
sections.
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Discussion:

The discussion section examines issues about the question and the answer for the whole of the entry.
{ssues which are appropriately included in the discussion section should:

+ span the individual observations.

« modify or amplity the conclusions which are made in the summary section.

« suggest additional data which were either not available or which could not be

obtained.

While results from individual observations can be mentioned, this shouid only be done to highlight es-
pecially interesting or significant results. For instance, if it is generally true that the case statement is
faster than nested i statements, but in one special case the If statement is superior, this could appro-
priately be mentioned, but the details should continue 1o be included in the observation.

The discussion section should also be used to resolve inconsistencies between observations, but not
to enumerate errors which are confined to a singie observation. Thus, a discussion section would ap-
propriately describe why the timings obtained from the vendor's literature in Observation #2 do not
match those obtained from benchmark testing in Observation #1. However, if the various tests within
Observation #1 disagree, this should be analyzed within the observation itsel{. The intra-observational
inconsistency would be mentioned in the discussion only when it was not resolved for the observation
and consequently affected conclusions (as mentioned in the preceding paragraph).

An example of when to include intra-observational inconsistencies: #, in testing loop execution speed,
an AES test concludes that a while loop is faster than a for loop and an ACEC test rates the for loop
faster, this issue is appropriately mentioned in the discussion section. However, if investigation shows
that the AES test allowed the compiler to optimize the while loop to be null, the inconsistency has been
resolved within the observation and should not be mentioned in the discussion section.

Configuration(s) tested:

1. Each configuration is assigned a number, allowing it to be conveniently referenced
(in FrameMaker, use paragraphs from the enumerate family).

The configuration{s) tested section lists the tested host and target configuration. A configuration may
have been used for one or several observations. The configuration should contain both generic descrip-
tions (e.g., “a Motorola 68020") and specific items (e.g., “a Motorola Microsystems MVME 133A-20 sin-
gle board computer”) which completely characterize the hardware and software used in the test: The
configuration does not describe the test{s) performed on the configuration. The tests are described in
the observations sections.

In cases where reference material contains test results from real systems, the tested configuration
should be described in this section.

A configuration ideally contains the information listed below (it is recognized that some configurations
may be incomplete in some areas). Since there are numerous important characteristics of microproces-
sor systems, this list may be augmented by additional information where appropriate (for example, a
tested multiprocessnr system might need to specify tested topology and would benefit from a synopsis
of the distributed architecture).
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® The host used in testing

It is assumed that the host configuration will not be a major factor in testing an em-
bedded target's performance. ldentification is shortened to identify the host and op-
erating system:

» the host hardware
= the host operating system, including version

« any special host characteristics which have a specific bearing on the execution
environment

Example:
Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

® The tested target hardware

The description contains two elements: 1) a high level description, providing a gen-
eral description (e.g., a Motorola MC68020), and 2) a specific description of pars
which would allow the reader to reconstruct the test hardware, assuming parts avail-
ability.

The hardware description should be an inventory of all the independently config-
urable hardware elements that make up the tested system. The exact format of this
section depends upon number of configurable elements in the system. The elements
presented below are believed to be typical, but not exhaustive:

» the processor type (e.g., 68020) [Generic]
« the processor clock speed (e.g., 20 MHz) [Generic]

« the memory cycle speed, (e.g., 60 milliseconds access time, no wait states)
[Generic]

 a list of the type and manufacturer of the target system (e.g., a Motorola
Microsystems MVME 141 board with an MVME 225 8 MB memory board in MMS
MVMES945 VME Bus Chassis) [Specitic]

« further hardware description, which characterizes the test equipment. This is
optional. When included, it should describe standard features of the target
hardware for readers unfamiliar with the specific systems under test (e.g., 8 MB
cache, pipelined processor, etc.) [Specific)

s any configurable or optional hardware features (e.g., an optional math
coprocessor)

» the strapping options used for the tested hardware [Specific)

« the serial and revision numbers for the target system (often unavailable)
[Specific)

Example:

Target:  Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb
zero-wait-state SRAM cache; 256-byte on-chip instruction cache;
256-byte on-chip data cache. The MVME141-1 board is paired
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with a Motorola MVME244-2 BMb DRAM memory module board
in a Motorola MVME945 VMEbus chassis.

* The tested compiler:

* compiler manufacturer
« version number (including version date if known)
« compiler fixes beyond the standard release numbers

« versions for components (where individual components are separately identified
and versioned, e.g., compiler, linker, loader...)

Example:

Compller: Verdix Ada Development System (VADS) VAX VMS to
MC68020/30, Version 6.0.5(f), with kernel moditied by BSY-2 con-
tractor General Electric.

* The tested run time or operating system, if a separate product:

» runtime system manutacturer
» version number (including version date if known)
» runtime system fixes beyond the standard release numbers
» configuration options used in the tested system. Since this often involves
describing all parameters used to generate a runtime system, this can be a
reference to an appendix.
+ any special options set at run time
The test(s) run on the configuration and the options used in preparing for the test run (e.g., the compiler
options such as optimization level} are not described here, but in the following observations. It is as-
sumed that the same configuration will be used by multiple tests.

Observation 1:

Observations contain the results from a test or tests, organized around a single important idea. The ob-
servation is a detailed look at the evidence that was used to answer the question, and should present
that evidence in detail. This does not mean that all data needs to be included, but rather that the impor-
1ant information is presented.

An observation normally applies only to a single configuration or is drawn from a single reference. How-
ever, this rule may be ignored when comparative information is appropriate to the explanation. The gen-
eral concept is that a single observation hightights the measurement method(s) used for a specific data
point used in answering the central question. For example, an observation might appropriately measure
and describe of the amount of memory used to support runtime checking for the topic “How does per-
formance change when all checks are turned off?" while information about the time used by runtime
checking should be placed in another observation.

An observation opens with a statement of what was observed (or at least what was attempted), de-
scribes how it was observed, and discusses the meaning of the observations. The section then closes
with raw data when appropriate.
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Topics that should be addressed in an observation, in their normal orgder of presentation, include:

« the object of interest that the observation describes, such as the amount of time
typical loop constructs require for execution

» the configuration(s) where the observation applies. This should reterence the
Configuration(s) tested section, and, optionally, may discuss if the observation
can reasonably be extended 1o other systems

» the method(s) used to draw conclusions

« significant observations, the test(s) they were derived from, and their interpreted
meanings

¢ the limitations of method or information which restrict the conclusions. The
analyst should scrupulously draw attention to limits of the methods used and any
missing data

« relevant raw data and options used to generate that data, in the format described
below

The writer may vary the order of presentation for greater effect, but should address all the topics.

As mentioned above, the observation closes with the raw data. This output may be from a variety of
sources, most commonly from the major Ada benchmark suites. An underlined, normal font title line
should be used to distinguish between sources. The most common are included below, but additional
entries should be made for other data sources.

Generic “Raw” Data and Source Paragraph Format

After opening the observation with the synthesis of the data, the observation section includes relevant
raw data. The data are presented in a series of subsections divided by subsection headings (underlined
text). The subsections designate the different data sources, most commonly tests from a benchmark
suite (e.g., the Ada Compiler Evaluation Capability), but sometimes reports from other workers or pub-
lished articles. Within each subsection, there will be one or more raw data elements containing one to
three parts as separate paragraphs:

® An identifier for the source of the data which would allow the user to find and repeat
the construction of the data.

This identifier includes several parts:

* The configuration tested. This is a back reference to the Contiguration(s) tested
section:

Configuration 1
» The test suite and version used, for example:
PIWG Ver. 12/12/87
ACEC Version 2.0
AES Version DIYAES 2.0

if the data was from published sources, the source should be cited in the refer-
ences section and briefly noted here.
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« The test or tests which generated the data {or, for some outputs the group of
related tests):

Test TO00001 = An individual test
SSA Loop Variations report & Grouped tests'
Group |, Test TI10 = Group plus test ic?

« Include any modifications or options used to prepare tests that are not default
values. For example, the default in the PIWG tests is to run tests with checking
enabled. If tests are also run with checking disabled, this should be noted.

PIWG Ver. 12/12/87, TOD0001A, Checks Off, Optimization Level 8
The identifier typically occupies a single line:
Configuration 1, PIWG Ver. 12/12/87, Test TO00001A.

However a muttiple-line format should be adopted when a large number of individual
tests are included:

Configuration 1, ACEC Release 2.0, SSA Reports of “Language Feature Over-
head™:

“Small Boolean Arrays {unpacked vs packed) =, AND, NOT"

“Small Boolean Arrays (unpacked vs packed) =, AND”

“Small Boolean Arrays (unpacked vs packed) /=, AND~

“Large Boolean Arrays (unpacked vs packed) AND” [tests ss351, $s348].
“Large Boolean Arrays (unpacked vs packed) AND" [tests ss350, ss353].

Care should be taken to ensure that the description uniquely identifies the source of
test data.?

* (Optionally) textual information or graphical presentations. Particularly relevant
would be explanations explaining anomalies in the data (e.g., erroneous
observations, values out of expected ranges, etc.).

* (Optionally) some or all of the raw data. The output may be trimmed to eliminate
unimportant details, but should not be rewritten or interpreted within this section.
However, where results are erroneous or misleading, a note should be inserted to
that effect.

1. In this case, the individual tests are grouped and listed in the raw data output and the test names need not be
repeated individually.

2. The AES test names ara unique, but knowing the next level in the hierarchy (the group) is often convenient.

3. The ACEC SSA (Single System Analysis) Report used for this document uses the same title for more than one
section; these sections were distinguished by listing the individual tests contained within the section when nec-
essary.

CMU/SEI-92-TR-32 203




Included raw data should be clearly distinguished from analysis text by size, font or
other means. For this report the OutputExample paragraph format was used which
uses indention and a reduced size, fixed-width font.

While more than one test can be included within the raw data subsections, it is assumed that the number
of entries will be relatively small. For now, no “sub-subsection” headings are contemplated.

Included below are examples of the heading for the most common benchmark suites used in preparing
this report:

PIWG Test Results:

This heading is used to identify output from the PIWG test suite.
EXAMPLE OF OUTPUT FONT. Allows 80 characters per line.

ACEC Test Results:

This heading is used to identify output from the ACEC test suite.

AES Test Results:
This heading is used o identify output from the AES test suite.

References

® <entry heres

The references section lists all supporting documentation used in the entry. Citations shouid be com-
plete enough to permit the reader to locate the resource. General format is:

AUTHOR(S); TITLE; {JOURNAL or BOOK or ORGANIZATION;} {(VOLUME or PUBLISHER or RE-
PORT #;} {(PAGES}; DATE.

Each reference cited in the entry should be entered here, even if previously included in other entries. if
no other references have heen cited, a single line with the word “none” should be used:

® hone
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